

    
      
          
            
  
GA4GH Variation Representation Specification

The Variation Representation Specification (VR-Spec) is a standard
developed by the Global Alliance for Genomic Health to facilitate and
improve sharing of genetic information.  The Specification consists of
a JSON Schema for representing many classes of genetic variation,
conventions to maximize the utility of the schema, and a Python
implementation that promotes adoption of the standard.
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Introduction

Maximizing the personal, public, research, and clinical value of genomic information will require
that clinicians, researchers, and testing laboratories exchange genetic variation data reliably.
The Variation Representation Specification (VR-Spec) — written by a partnership among national
information resource providers, major public initiatives, and diagnostic testing laboratories — is
an open specification to standardize the exchange of variation data.

Here we document the primary contributions of this specification for variation representation:


	Terminology and information model. Definitions for biological terms may be abstract or
intentionally ambiguous, often accurately reflecting scientific uncertainty or understanding at
the time. Abstract and ambiguous terms are not readily translatable into a representation of
knowledge. Therefore, the specification begins with precise computational definitions for
biological concepts that are essential to representing sequence variation. The VR-Spec information
model specifies how the computational definitions are to be represented in fields, semantics,
objects, and object relationships.


	Machine readable schema. To be useful for information exchange, the information model should
be realized in a schema definition language. The VR-Spec schema is currently implemented using JSON
Schema, however it is intended to support translations to other schema systems (e.g. XML,
OpenAPI, and GraphQL). The schema repository includes language-agnostic tests for ensuring schema
compliance in downstream implementations.


	Conventions that promote reliable data sharing. The VR-Spec recommends conventions regarding
the use of the schema and that facilitate data sharing.  For example, the VR-Spec recommends
using fully justified allele normalization using an algorithm inspired by NCBI’s SPDI project [https://www.biorxiv.org/content/10.1101/537449v1].


	Globally unique computed identifiers. This specification also recommends a specific algorithm
for constructing distributed and globally-unique identifiers for molecular variation. Importantly, this
algorithm enables data providers and consumers to computationally generate consistent, globally
unique identifiers for variation without a central authority.


	A Python implementation. We provide a Python package (vr-python [https://github.com/ga4gh/vr-python/]) that demonstrates the
above schema and algorithms, and supports translation of existing
variant representation schemes into VR-Spec for use in genomic data
sharing.  It may be used as the basis for development in Python,
but it is not required in order to use the VR Specification.




The machine readable schema definitions and example code are available online at the VR-Spec
repository (https://github.com/ga4gh/vr-spec).

Readers may wish to view a complete example before reading the specification.





          

      

      

    

  

    
      
          
            
  
Terminology & Information Model

When biologists define terms in order to describe phenomena and
observations, they rely on a background of human experience and
intelligence for interpretation. Definitions may be abstract, perhaps
correctly reflecting uncertainty of our understanding at the
time. Unfortunately, such terms are not readily translatable into an
unambiguous representation of knowledge.

For example, “allele” might refer to “an alternative form of a gene or
locus” [Wikipedia [https://en.wikipedia.org/wiki/Allele]], “one of two or more forms of the DNA sequence
of a particular gene” [ISOGG [https://isogg.org/wiki/Allele]], or “one of a set of coexisting
sequence alleles of a gene” [Sequence Ontology [http://www.sequenceontology.org/browser/current_svn/term/SO:0001023]]. Even for human
interpretation, these definitions are inconsistent: does the
definition precisely describe a specific change on a specific
sequence, or, rather, a more general change on an undefined sequence?
In addition, all three definitions are inconsistent with the practical
need for a way to describe sequence changes outside regions associated
with genes.

The computational representation of biological concepts requires
translating precise biological definitions into data structures that
can be used by implementers. This translation should result in a
representation of information that is consistent with conventional
biological understanding and, ideally, be able to accommodate future
data as well. The resulting computational representation of
information should also be cognizant of computational performance, the
minimization of opportunities for misunderstanding, and ease of
manipulating and transforming data.

Accordingly, for each term we define below, we begin by describing the
term as used by biologists (biological definition) as
available. When a term has multiple biological definitions, we
explicitly choose one of them for the purposes of this
specification. We then provide a computer modelling definition
(computational definition) that reformulates the biological
definition in terms of information content. We then translate each of
these computational definitions into precise specifications for the
(logical model). Terms are ordered “bottom-up” so that definitions
depend only on previously-defined terms.


Note

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as
described in RFC 2119 [https://www.ietf.org/rfc/rfc2119.txt].




Data Model Notes and Principles


	VR uses snake_case [https://simple.wikipedia.org/wiki/Snake_case] to represent
compound words.  Although the schema is currently JSON-based (which
would typically use camelCase), VR itself is intended to be neutral
with respect to languages and database.


	VR objects are value objects [https://en.wikipedia.org/wiki/Value_object].  Two objects are
considered equal if and only if their respective attributes are
equal.  As value objects, VR objects are used as primitive types and
SHOULD NOT be used as containers for related data.  Instead, related
data should be associated with VR objects through identifiers.  See
Computed Identifiers.


	Error handling is intentionally unspecified and delegated to
implementation.  The VR-Spec provides foundational data types that
enable significant flexibility.  Except where required by this
specification, implementations may choose whether and how to
validate data.  For example, implementations MAY choose to validate
that particular combinations of objects are compatible, but such
validation is not required.


	We recognize that a common desire may be to have human-readable
identifiers associated with VR objects. We recommend using the _id
field (see Optional Attributes below) to create a lookup for
any such identifiers (see example usage), and provide reference methods for
creating VR identifiers from other common variant formats (see the
HGVS translation example).







Optional Attributes


	VR attributes use a leading underscore to represent optional
attributes that are not part of the value object.  Such attributes
are not considered when evaluating equality or creating computed
identifiers. Currently, the only such attribute in the specification
is the _id attribute.


	The _id attribute is available to identifiable objects, and MAY be
used by an implementation to store the identifier for a VR object.
If used, the stored _id element MUST be a CURIE. If used for
creating a Truncated Digest (sha512t24u) for parent objects, the stored
element must be a GA4GH Computed Identifier.







Primitive Concepts


CURIE

Biological definition

None.

Computational definition

A CURIE [https://www.w3.org/TR/curie/] formatted string.  A CURIE
string has the structure prefix:reference (W3C Terminology).

Implementation guidance


	All identifiers in VR-Spec MUST be a valid Compact URI (CURIE) [https://www.w3.org/TR/curie/], regardless of
whether the identifier refers to GA4GH VR objects or external data.


	For GA4GH VR Objects, this specification RECOMMENDS using globally
unique Computed Identifiers for use within and between
systems.


	For external data, CURIE-formatted identifiers MUST be used.  When
an appropriate namespace exists at identifiers.org [http://identifiers.org/], that namespace MUST be used.  When an
appropriate namespace does not exist at identifiers.org [http://identifiers.org/], support is implementation-dependent.
That is, implementations MAY choose whether and how to support
informal or local namespaces.


	Implemantions MUST use CURIE identifiers verbatim and MUST NOT be
modified in any way (e.g., case-folding).  Implementations MUST NOT
expose partial (parsed) identifiers to any client.




Example

Identifiers for GRCh38 chromosome 19:

ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl
refseq:NC_000019.10
grch38:19





See Identifier Construction for examples of CURIE-based identifiers for VR
objects.




Residue

Biological definition

A residue refers to a specific monomer [https://en.wikipedia.org/wiki/Monomer] within the polymeric
chain [https://en.wikipedia.org/wiki/Polymer] of a protein [https://en.wikipedia.org/wiki/Protein] or nucleic acid [https://en.wikipedia.org/wiki/Nucleic_acid] (Source: Wikipedia Residue
page [https://en.wikipedia.org/wiki/Residue_%28chemistry%29]).

Computational definition

A character representing a specific residue (i.e., molecular species)
or groupings of these (“ambiguity codes”), using one-letter IUPAC
abbreviations [https://www.genome.jp/kegg/catalog/codes1.html] for
nucleic acids and amino acids.




Sequence

Biological definition

A contiguous, linear polymer of nucleic acid or amino acid residues.

Computational definition

A character string of Residues that represents a
biological sequence using the conventional sequence order (5’-to-3’
for nucleic acid sequences, and amino-to-carboxyl for amino acid
sequences). IUPAC ambiguity codes are permitted in Sequences.

Information model

A Sequence is a string, constrained to contain only characters representing IUPAC nucleic acid or
amino acid codes.

Implementation guidance


	Sequences MAY be empty (zero-length) strings. Empty sequences are used as the
replacement Sequence for deletion Alleles.


	Sequences MUST consist of only uppercase IUPAC abbreviations, including ambiguity codes.


	A Sequence provides a stable coordinate system by which an Allele MAY be located and
interpreted.


	A Sequence MAY have several roles. A “reference sequence” is any Sequence used
to define an Allele. A Sequence that replaces another Sequence is
called a “replacement sequence”.


	In some contexts outside the VR specification, “reference sequence” may refer
to a member of set of sequences that comprise a genome assembly. In the VR
specification, any sequence may be a “reference sequence”, including those in
a genome assembly.


	For the purposes of representing sequence variation, it is not
necessary that Sequences be explicitly “typed” (i.e., DNA, RNA, or
AA).









Composite Concepts


Interval (Abstract Class)

Biological definition

None.

Computational definition

The Interval abstract class defines a range on a Sequence,
possibly with length zero, and specified using
Interbase Coordinates. An Interval MAY be a
SimpleInterval with a single start and end coordinate.
Future Location and Interval types will
enable other methods for describing where Variation occurs. Any
of these MAY be used as the Interval for Location.


VR Uses Interbase Coordinates

GA4GH VR uses interbase coordinates when referring to spans of
sequence.

Interbase coordinates refer to the zero-width points before and
after residues. An interval of interbase
coordinates permits referring to any span, including an empty span,
before, within, or after a sequence. See
Interbase Coordinates for more details on this design
choice.  Interbase coordinates are always zero-based.




SimpleInterval

Computational definition

An Interval (Abstract Class) with a single start and end coordinate.

Information model



	Field

	Type

	Limits

	Description





	type

	string

	1..1

	Interval type; MUST be set to ‘SimpleInterval’



	start

	uint64

	1..1

	start position



	end

	uint64

	1..1

	end position






Implementation guidance


	Implementations MUST enforce values 0 ≤ start ≤ end. In the case of
double-stranded DNA, this constraint holds even when a feature is on
the complementary strand.


	VR uses Interbase coordinates because they provide conceptual
consistency that is not possible with residue-based systems (see
rationale). Implementations
will need to convert between interbase and 1-based inclusive
residue coordinates familiar to most human users.


	Interbase coordinates start at 0 (zero).


	The length of an interval is end - start.


	An interval in which start == end is a zero width point between two residues.


	An interval of length == 1 MAY be colloquially referred to as a position.


	Two intervals are equal if the their start and end coordinates are equal.


	Two intervals intersect if the start or end coordinate of one is
strictly between the start and end coordinates of the other. That
is, if:



	b.start < a.start < b.end OR


	b.start < a.end < b.end OR


	a.start < b.start < a.end OR


	a.start < b.end < a.end









	Two intervals a and b coincide if they intersect or if they are
equal (the equality condition is REQUIRED to handle the case of two
identical zero-width Intervals).


	<start, end>=<0,0> refers to the point with width zero before the first residue.


	<start, end>=<i,i+1> refers to the i+1th (1-based) residue.


	<start, end>=<N,N> refers to the position after the last residue for Sequence of length N.


	See example notebooks in GA4GH VR Python Implementation [https://github.com/ga4gh/vr-python/].




Example

{
  "end": 44908822,
  "start": 44908821,
  "type": "SimpleInterval"
}










Location (Abstract Class)

Biological definition

As used by biologists, the precision of “location” (or “locus”) varies
widely, ranging from precise start and end numerical coordinates
defining a Location, to bounded regions of a sequence, to conceptual
references to named genomic features (e.g., chromosomal bands, genes,
exons) as proxies for the Locations on an implied reference sequence.

Computational definition

The Location abstract class refers to position of a contiguous
segment of a biological sequence.  The most common and concrete
Location is a SequenceLocation, i.e., a Location based on a
named sequence and an Interval on that sequence. Additional
Intervals and Locations may also be conceptual or symbolic locations,
such as a cytoband region or a gene. Any of these may be used as the
Location for Variation.

Implementation Guidance


	Location refers to a position.  Although it MAY imply a sequence,
the two concepts are not interchangable, especially when the
location is non-specific (e.g., a range) or symbolic (a gene).





SequenceLocation

Biological definition

None

Computational definition

A Location subclass for describing a defined Interval (Abstract Class) over a
named Sequence.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Location Id; MUST be unique within document



	type

	string

	1..1

	Location type; MUST be set to ‘SequenceLocation’



	sequence_id

	CURIE

	1..1

	An id mapping to the Computed Identifiers of the external database Sequence containing the sequence to be located.



	interval

	Interval (Abstract Class)

	1..1

	Position of feature on reference sequence specified by sequence_id.






Implementation guidance


	
	For a Sequence of length n:

	
	0 ≤ interval.start ≤ interval.end ≤ n


	interbase coordinate 0 refers to the point before the start of the Sequence


	interbase coordinate n refers to the point after the end of the Sequence.










	Coordinates MUST refer to a valid Sequence. VR does not support
referring to intronic positions within a transcript sequence,
extrapolations beyond the ends of sequences, or other implied
sequence.





Important

HGVS permits variants that refer to non-existent
sequence. Examples include coordinates extrapolated
beyond the bounds of a transcript and intronic
sequence. Such variants are not representable using VR
and MUST be projected to a genomic reference in order
to be represented.



Example

{
  "interval": {
    "end": 44908822,
    "start": 44908821,
    "type": "SimpleInterval"
  },
  "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
  "type": "SequenceLocation"
}










State (Abstract Class)

Biological definition

None.

Computational definition

State objects are one of two primary components specifying a VR
Allele (in addition to Location (Abstract Class)), and the designated
components for representing change (or non-change) of the features
indicated by the Allele Location. As an abstract class, State currently
encompasses single and contiguous Sequence changes (see SequenceState), with additional types under consideration (see
State Classes).


SequenceState

Biological definition

None.

Computational definition

The SequenceState class specifically captures a Sequence as a
State (Abstract Class). This is the State class to use for representing
“ref-alt” style variation, including SNVs, MNVs, del, ins, and delins.

Information model



	Field

	Type

	Limits

	Description





	type

	string

	1..1

	State type; MUST be set to ‘SequenceState’



	sequence

	string

	1..1

	The string of sequence residues that is to be used as the state for other types.






Example

{
  "sequence": "T",
  "type": "SequenceState"
}










Variation

Biological definition

In biology, variation is often used to mean genetic variation [https://en.wikipedia.org/wiki/Genetic_variation],
describing the differences observed in DNA among individuals.

Computational definition

The Variation abstract class is the top-level object in the
VR Schema Diagram and represents the concept of a molecular
state. The representation and types of molecular states are widely
varied, and there are several Variation Classes currently under
consideration to capture this diversity. The primary Variation
subclass defined by the VR 1.0 specification is the
Allele, with the Text subclass for capturing other
Variations that are not yet covered.


Allele

Biological definition

One of a number of alternative forms of the same gene or same genetic
locus. In the context of biological sequences, “allele” refers to one
of a set of specific changes within a Sequence. In the context
of VR, Allele refers to a Sequence or Sequence change with respect to
a reference sequence, without regard to genes or other features.

Computational definition

An Allele is an assertion of the State of a biological
sequence at a Location.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Variation Id; MUST be unique within document



	type

	string

	1..1

	Variation type; MUST be set to ‘Allele’



	location

	Location (Abstract Class)

	1..1

	Where Allele is located



	state

	State (Abstract Class)

	1..1

	State at location






Implementation guidance


	The State and Location subclasses
respectively represent diverse kinds of sequence changes and
mechanisms for describing the locations of those changes, including
varying levels of precision of sequence location and categories of
sequence changes.


	Implementations MUST enforce values interval.end ≤ sequence_length
when the Sequence length is known.


	Alleles are equal only if the component fields are equal: at the
same location and with the same state.


	Alleles MAY have multiple related representations on the same
Sequence type due to normalization differences.


	Implementations SHOULD normalize Alleles using “justified”
normalization whenever possible to facilitate
comparisons of variation in regions of representational ambiguity.


	Implementations MUST normalize Alleles using “justified”
normalization when generating a
Computed Identifiers.


	When the alternate Sequence is the same length as the interval, the
lengths of the reference Sequence and imputed Sequence are the
same. (Here, imputed sequence means the sequence derived by applying
the Allele to the reference sequence.) When the replacement Sequence
is shorter than the length of the interval, the imputed Sequence is
shorter than the reference Sequence, and conversely for replacements
that are larger than the interval.


	When the replacement is “” (the empty string), the Allele refers to
a deletion at this location.


	The Allele entity is based on Sequence and is intended to be used
for intragenic and extragenic variation. Alleles are not explicitly
associated with genes or other features.


	Biologically, referring to Alleles is typically meaningful only in
the context of empirical alternatives. For modelling purposes,
Alleles MAY exist as a result of biological observation or
computational simulation, i.e., virtual Alleles.


	“Single, contiguous” refers the representation of the Allele, not
the biological mechanism by which it was created. For instance, two
non-adjacent single residue Alleles could be represented by a single
contiguous multi-residue Allele.


	The terms “allele” and “variant” are often used interchangeably,
although this use may mask subtle distinctions made by some users.



	In the genetics community, “allele” may also refer to a
haplotype.


	“Allele” connotes a state whereas “variant” connotes a change
between states. This distinction makes it awkward to use variant
to refer to the concept of an unchanged position in a Sequence
and was one of the factors that influenced the preference of
“Allele” over “Variant” as the primary subject of annotations.


	See Use “Allele” rather than “Variant” for
further details.









	When a trait has a known genetic basis, it is typically represented
computationally as an association with an Allele.


	This specification’s definition of Allele applies to all Sequence
types (DNA, RNA, AA).




Example

{
   "location": {
      "interval": {
         "end": 44908822,
         "start": 44908821,
         "type": "SimpleInterval"
      },
      "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
      "type": "SequenceLocation"
   },
   "state": {
      "sequence": "T",
      "type": "SequenceState"
   },
   "type": "Allele"
}








Text

Biological definition

None

Computational definition

The Text subclass of Variation is intended to capture textual
descriptions of variation that cannot be parsed by other Variation
subclasses, but are still treated as variation.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Variation Id; MUST be unique within document



	type

	string

	1..1

	Variation type; MUST be set to ‘Text’



	definition

	string

	1..1

	The textual variation representation not parsable by other subclasses of Variation.






Implementation guidance


	An implementation MUST represent Variation with subclasses other
than Text if possible.


	An implementation SHOULD define or adopt conventions for defining
the strings stored in Text.definition.


	If a future version of VR-Spec is adopted by an implementation and
the new version enables defining existing Text objects under a
different Variation subclass, the implementation MUST construct a
new object under the other Variation subclass. In such a case, an
implementation SHOULD persist the original Text object and respond
to queries matching the Text object with the new object.


	Additional Variation subclasses are continually under
consideration. Please open a GitHub issue [https://github.com/ga4gh/vr-spec/issues] if you would like to
propose a Variation subclass to cover a needed variation
representation.




Example

{
  "definition": "APOE loss",
  "type": "Text"
}















          

      

      

    

  

    
      
          
            
  
Schema


Overview


[image: _images/schema-current.png]
VR Schema Diagram


The VR Schema describes multiple composite objects, which
are grouped under four abstract classes: Variation,
Location (Abstract Class), State (Abstract Class), and Interval (Abstract Class). These classes
and their relationships to the representation of Variation are
illustrated here. All classes have a string type. Dashed borders
denote abstract classes. Abstract classes are not
instantiated. Thin solid borders denote classes that may be
instantiated but are not identifiable. Bold borders denote
identifiable objects (i.e., may be serialized and identified by
computed identifier). Solid arrow lines denoted
inheritance. Subclasses inherit all attributes from their
parent. Inherited attributes are not shown.  These abstract classes
and their concrete child classes are described in the following
documents.








Machine Readable Specifications

The machine readable VR Specification is written using JSON Schema [https://json-schema.org/].

The schema itself is written in YAML (vr.yaml [https://raw.githubusercontent.com/ga4gh/vr-spec/1.0.0-1-gd87e685/schema/vr.yaml]) and converted to JSON
(vr.json [https://raw.githubusercontent.com/ga4gh/vr-spec/1.0.0-1-gd87e685/schema/vr.json]).  Version 1.0 is current.

Contributions to the schema MUST be written in the YAML document.







          

      

      

    

  

    
      
          
            
  
Implementation Guide

This section describes the data and algorithmic components that are
REQUIRED for implementations of the VR Specification.


	Required External Data: All implementations will require access to
sequences and sequence accessions. The Required External Data
section provides guidance on the abstract functionality that is
required in order to implement VR.


	Normalization: Expands Alleles to the maximal region of
representational ambiguity.


	Computed Identifiers: Generate globally unique identifiers
based solely on the variation definition.











          

      

      

    

  

    
      
          
            
  
Required External Data

All VR-Spec implementations will require external data regarding
sequences and sequence metadata.  The choices of data sources and
access methods are left to implementations.  This section provides
guidance about how to implement required data and helps implementers
estimate effort.  This section is descriptive only: it is not intended
to impose requirements on interface to, or sources of, external data.
For clarity and completeness, this section also describes the contexts
in which external data are used.


Contexts


	Conversion from other variant formats When converting from other
variation formats, implementations MUST translate primary database
accessions or identifiers (e.g., NM_000551.3 or
refseq:NM_000551.3) to a GA4GH VR sequence identifier (
ga4gh:SQ.v_QTc1p-MUYdgrRv4LMT6ByXIOsdw3C_)


	Conversion to other variant formats When converting to other
variation formats, implementations SHOULD translate GA4GH VR
sequence identifier ( ga4gh:SQ.v_QTc1p-MUYdgrRv4LMT6ByXIOsdw3C_)
to primary database identifiers (refseq:NM_000551.3) that will
be more readily recognized by users.


	Normalization During Normalization, implementations will
need access to sequence length and sequence contexts.







Data Services

The following tables summarizes data required in the above contexts:


Data Service Desciptions

	Data Service

	Description

	Contexts





	sequence

	For a given sequence identifier and range, return the
corresponding subsequence.

	normalization



	sequence length

	For a given sequence identifier, return the length of the
sequence

	normalization



	identifier translation

	For a given sequence identifier and target namespace, return
all identifiers in the target namespace that are equivelent to
the given identifier.

	Conversion to/from other formats







Note

Construction of the GA4GH computed identifier for a sequence
is described in Computed Identifiers.






Suggested Implementation

In order to maximize portability and to insulate implementations from
decisions about external data sources, implementers should consider
writing an abstract data proxy interface that to define a service, and
then implement this interface for each data backend to be
supported. The vr-python: GA4GH VR Python Implementation DataProxy class [https://github.com/ga4gh/vr-python/blob/master/src/ga4gh/vr/extras/dataproxy.py]
provides an example of this design pattern and sample replies.

The DataProxy interface defines three methods:


	get_sequence(identifier, start, end): Given a sequence
identifier and start and end coordinates, return the corresponding
sequence segment.


	get_metadata(identifier): Given a sequence identifier, return a
dictionary of length, alphabet, and known aliases.


	translate_sequence_identifier(identifier, namespace): Given a
sequence identifier, return all aliases in the specified
namespace. Zero or more aliases may be returned.




GA4GH VR Python Implementation [https://github.com/ga4gh/vr-python/] implements the DataProxy interface using a local SeqRepo [https://github.com/biocommons/biocommons.seqrepo/]
instance backend and using a SeqRepo REST Service [https://github.com/biocommons/seqrepo-rest-service/] backend.  A GA4GH refget
implementation has been started, but is pending interface changes to
support lookup using primary database accesssions.


Examples

The following examples are taken from VR Python Notebooks [https://github.com/ga4gh/vr-python/tree/master/notebooks]:

from ga4gh.vr.extras.dataproxy import SeqRepoRESTDataProxy
seqrepo_rest_service_url = "http://localhost:5000/seqrepo"
dp = SeqRepoRESTDataProxy(base_url=seqrepo_rest_service_url)

def get_sequence(identifier, start=None, end=None):
    """returns sequence for given identifier, optionally limited
    to interbase <start, end> interval"""
    return dp.get_sequence(identifier, start, end)
def get_sequence_length(identifier):
    """return length of given sequence identifier"""
    return dp.get_metadata(identifier)["length"]
def translate_sequence_identifier(identifier, namespace):
    """return for given identifier, return *list* of equivalent identifiers in given namespace"""
    return dp.translate_sequence_identifier(identifier, namespace)





get_sequence_length("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl")
58617616





start, end = 44908821-25, 44908822+25
get_sequence("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl", start, end)
'CCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGC'





translate_sequence_identifier("GRCh38:19", "ga4gh")
['ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl']





translate_sequence_identifier("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl", "GRCh38")
['GRCh38:19', 'GRCh38:chr19']













          

      

      

    

  

    
      
          
            
  
Normalization

Certain insertion or deletion alleles may be represented ambiguously
when using conventional sequence normalization, resulting in
significant challenges when comparing such alleles.

The VR-Spec describes a “fully-justified” normalization algorithm
inspired by NCBI’s Variant Overprecision Correction Algorithm 1.
Fully-justified normalization expands such ambiguous representation
over the entire region of ambiguity, resulting in an unambiguous
representation that may be readily compared with other alleles.

The VR-Spec RECOMMENDS that Alleles at precise locations are
normalized to a fully justified form unless there is a compelling
reason to do otherwise.

The process for fully justifying two alleles (reference sequence and
alternate sequence) at an interval is outlined below.


	Trim sequences:


	Remove suffixes common to all alleles, if any. Decrement
the interval end position by the length of the trimmed suffix.


	Remove prefixes common to all alleles, if any. Increment
the interval start position by the length of the trimmed prefix.


	If neither allele is empty, the allele pairs represent a alleles
that do not have common prefixes or suffixes.  Normalization is not
applicable and the trimmed alleles are returned.






	Determine bounds of ambiguity:


	Left roll: While the terminal base of all non-empty alleles is
equal to the base prior to the current position, circularly
permute all alleles rightward and move the current position
leftward. When terminating, return left_roll, the number
of steps rolled leftward.


	Right roll: Symmetric case of left roll, returning right_roll,
the number of steps rolled rightward.






	Update position and alleles:


	To each trimmed allele, prepend the left_roll bases prior to the
trimmed allele position and append the right_roll bases after
the trimmed allele position.


	Expand the trimmed allele position by decrementing the start by
left_roll and incrementing the end by right_roll.









VR Justified Normalization A demonstration of fully justifying an insertion allele.






	Steps

	
Interbase Position

and Alleles




	
Resulting Allele Set

(All alleles in this column result

in the same empirical sequence change.)








	
	Given allele S:g.5_6delinsCAGCA defined on reference sequence S=TCAGCAGCT





	
(4,6)

(“CA”, “CAGCA”)




	
\[TCAG \Bigl[ \frac{CA}{CAGCA} \Bigr] GCT\]




	
	Trimming

Remove prefix common to all alleles, if any, and update start position. Remove suffix common to all alleles, if any, and update end position.

Note:  This example shows removing C prefix and A suffix.
Equivalently in this case, CA prefix or CA suffix could be removed.






	
(5,5)

(“”, “AGC”)




	
\[TCAGC \Bigl[ \frac{}{AGC} \Bigr] AGCT  ①\]




	
	Condition: One allele must be empty.

If the reference allele is empty, the allele set represents an insertion in the reference.

If the alternate allele is empty, the allele set represents a deletion in the reference.

If neither is true, the allele set represents a substitution, which is not subject to further normalization.






	
	


	
	Roll Left

Begin with trimmed alleles ①.

While the terminal base of all non-empty alleles equals the base
prior to the current position, circularly permute all alleles right
one step and move the start left one position.

Shown: The 4 incremental steps of rolling left.






	
(1,1)

(“”, “CAG”)




	
\[\begin{split}TCAGC \Bigl[ \frac{}{AGC} \Bigr] AGCT ①\\
TCAG \Bigl[ \frac{}{CAG} \Bigr] CAGCT   \\
TCA \Bigl[ \frac{}{GCA} \Bigr] GCAGCT   \\
TC \Bigl[ \frac{}{AGC} \Bigr] AGCAGCT   \\
T \Bigl[ \frac{}{CAG} \Bigr] CAGCAGCT   \\
\Rightarrow left\_roll = 4\end{split}\]




	
	Roll Right

Symmetric case of step 3.






	
(8,8)

(“”, “AGC”)




	
\[\begin{split}TCAGC \Bigl[ \frac{}{AGC} \Bigr] AGCT ①\\
TCAGCA \Bigl[ \frac{}{GCA} \Bigr] GCT   \\
TCAGCAG \Bigl[ \frac{}{CAG} \Bigr] CT   \\
TCAGCAGC \Bigl[ \frac{}{AGC} \Bigr] T   \\
\Rightarrow right\_roll = 3\end{split}\]




	
	Update position and alleles to fully justify within region of ambiguity.

To each trimmed allele (①), prepend the left_roll preceding reference
bases and append the right_roll following reference bases
(corresponding to the interbase reference spans (1,5) and (5,8) respectively).

Decrement the start position by left_roll, and increment the end
position by right_roll.






	
(1,8)

(“CAGCAGC”,

“CAGCAGCAGC”)




	
\[\begin{split}TCAGC \Bigl[ \frac{}{AGC} \Bigr] AGCT ①\\
T \Bigl[ \frac{CAGCAGC}{CAGCAGCAGC} \Bigr] T\end{split}\]
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Computed Identifiers

The VR-Spec provides an algorithmic solution to deterministically
generate a globally unique identifier from a VR object itself. All
valid implementations of the VR Computed Identifier will generate the
same identifier when the objects are identical, and will generate
different identifiers when they are not. The VR Computed Digest
algorithm obviates centralized registration services, allows
computational pipelines to generate “private” ids efficiently, and
makes it easier for distributed groups to share data.

A VR Computed Identifier for a VR concept is computed as follows:


	If the object is an Allele, normalize it.


	Generate binary data to digest. If the object is a Sequence
string, encode it using UTF-8.  Otherwise, serialize the object
using Digest Serialization.


	Generate a truncated digest from the binary data.


	Construct an identifier based on the digest and object type.




The following diagram depicts the operations necessary to generate a
computed identifier.  These operations are described in detail in the
subsequent sections.


[image: ../_images/id-dig-ser.png]
Serialization, Digest, and Computed Identifier Operations
Entities are shown in gray boxes. Functions are denoted by bold
italics.  The yellow, green, and blue boxes, corresponding to the
sha512t24u, ga4gh_digest, and ga4gh_identify functions
respectively, depict the dependencies among functions.
SHA512/192 is SHA-512 [https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] truncated at 192 bits using the
systematic name recommended by SHA-512 (§5.3.6).  base64url [https://tools.ietf.org/html/rfc4648#section-5] is the
official name of the variant of Base64 [https://tools.ietf.org/html/rfc4648] encoding that uses a
URL-safe character set. [figure source [https://www.draw.io/?page-id=M8V1EMsVyfZQDDbK8gNL&title=VR%20diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fa%2Fharts.net%2Fuc%3Fid%3D1Qimkvi-Fnd1hhuixbd6aU4Se6zr5Nc1h%26export%3Ddownload]]




Note

Most implementation users will need only the
ga4gh_identify function.  We describe the
ga4gh_serialize, ga4gh_digest, and sha512t24u
functions here primarily for implementers.




Requirements

Implementations MUST adhere to the following requirements:


	Implementations MUST use the normalization, serialization, and
digest mechanisms described in this section when generating GA4GH
Computed Identifiers.  Implementations MUST NOT use any other
normalization, serialization, or digest mechanism to generate a
GA4GH Computed Identifier.


	Implementations MUST ensure that all nested objects are identified
with GA4GH Computed Identifiers.  Implementations MAY NOT reference
nested objects using identifiers in any namespace other than
ga4gh.





Note

The GA4GH schema MAY be used with identifiers from any
namespace. For example, a SequenceLocation may be defined
using a sequence_id = refseq:NC_000019.10.  However,
an implementation of the Computed Identifier algorithm MUST
first translate sequence accessions to GA4GH SQ
accessions to be compliant with this specification.






Digest Serialization

Digest serialization converts a VR object into a binary representation
in preparation for computing a digest of the object.  The Digest
Serialization specification ensures that all implementations serialize
variation objects identically, and therefore that the digests will
also be identical.  VR Specification [https://github.com/ga4gh/vr-python/] provides validation tests to ensure
compliance.


Important

Do not confuse Digest Serialization with JSON
serialization or other serialization forms.  Although
Digest Serialization and JSON serialization appear
similar, they are NOT interchangeable and will generate
different GA4GH Digests.



Although several proposals exist for serializing arbitrary data in a
consistent manner ([Gibson], [OLPC], [JCS]), none have been
ratified. As a result, VR Specification [https://github.com/ga4gh/vr-python/] defines a custom serialization format
that is consistent with these proposals but does not rely on them for
definition; it is hoped that a future ratified standard will be
forward compatible with the process described here.

The first step in serialization is to generate message content.  If
the object is a string representing a Sequence, the
serialization is the UTF-8 encoding of the string.  Because this is a
common operation, implementations are strongly encouraged to
precompute GA4GH sequence identifiers as described in
Required External Data.

If the object is a composite VR object, implementations MUST:



	ensure that objects are referenced with identifiers in the
ga4gh namespace


	replace nested identifiable objects (i.e., objects that have id
properties) with their corresponding digests


	order arrays of digests and ids by Unicode Character Set values


	filter out fields that start with underscore (e.g., _id)


	filter out fields with null values







The second step is to JSON serialize the message content with the
following REQUIRED constraints:



	encode the serialization in UTF-8


	exclude insignificant whitespace, as defined in RFC8259§2 [https://tools.ietf.org/html/rfc8259#section-2]


	order all keys by Unicode Character Set values


	use two-char escape codes when available, as defined in
RFC8259§7 [https://tools.ietf.org/html/rfc8259#section-7]







The criteria for the digest serialization method was that it must be
relatively easy and reliable to implement in any common computer
language.

Example

allele = models.Allele(location=models.SequenceLocation(
    sequence_id="ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
    interval=simple_interval),
    state=models.SequenceState(sequence="T"))
ga4gh_serialize(allele)





Gives the following binary (UTF-8 encoded) data:

{"location":"u5fspwVbQ79QkX6GHLF8tXPCAXFJqRPx","state":{"sequence":"T","type":"SequenceState"},"type":"Allele"}





For comparison, here is one of many possible JSON serializations of the same object:

allele.for_json()





{
  "location": {
    "interval": {
      "end": 44908822,
      "start": 44908821,
      "type": "SimpleInterval"
    },
    "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
    "type": "SequenceLocation"
  },
  "state": {
    "sequence": "T",
    "type": "SequenceState"
  },
  "type": "Allele"
}








Truncated Digest (sha512t24u)

The sha512t24u truncated digest algorithm computes an ASCII digest
from binary data.  The method uses two well-established standard
algorithms, the SHA-512 [https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] hash function, which generates a binary
digest from binary data, and Base64 [https://tools.ietf.org/html/rfc4648] URL encoding, which encodes
binary data using printable characters.

Computing the sha512t24u truncated digest for binary data consists of
three steps:


	Compute the SHA-512 [https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] digest of a binary data.


	Truncate the digest to the left-most 24 bytes (192 bits).  See
Truncated Digest Collision Analysis for the rationale for 24
bytes.


	Encode the truncated digest as a base64url [https://tools.ietf.org/html/rfc4648#section-5] ASCII string.




>>> import base64, hashlib
>>> def sha512t24u(blob):
        digest = hashlib.sha512(blob).digest()
        tdigest = digest[:24]
        tdigest_b64u = base64.urlsafe_b64encode(tdigest).decode("ASCII")
        return tdigest_b64u
>>> sha512t24u(b"ACGT")
'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'








Identifier Construction

The final step of generating a computed identifier for a VR object is
to generate a W3C CURIE [https://www.w3.org/TR/curie/] formatted identifier, which
has the form:

prefix ":" reference





The GA4GH VR-Spec constructs computed identifiers as follows:

"ga4gh" ":" type_prefix "." <digest>






Warning

Do not confuse the W3C CURIE prefix (“ga4gh”) with the
type prefix.



Type prefixes used by VR are:







	type_prefix

	VR Spec class name





	SQ

	Sequence



	VA

	Allele



	VSL

	Sequence Location



	VT

	Text






For example, the identifer for the allele example under Digest Serialization gives:

ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_
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Example

This section provides a complete, language-neutral example of
essential features of VR.  In this example, we will translate an
HGVS-formatted variant, NC_000013.11:g.32936732G>C, into its VR
format and assign a globally unique identifier.


Translate HGVS to VR


Polymorphism in VR

VR uses polymorphism extensively in order to provide a coherent
top-down structure for variation while enabling precise models for
variation data.

For example, Allele is a kind of Variation, SequenceLocation is a
kind of Location, and SequenceState is a kind of State.  See
Future Plans for the roadmap of VR data classes and
relationships.

All VR objects contain a type attribute, which is used to
discriminate polymorphic objects.



The HGVS [http://varnomen.hgvs.org] string
NC_000013.11:g.32936732G>C represents a single base substitution
on the reference sequence NC_000013.11 [https://www.ncbi.nlm.nih.gov/nuccore/NC_000013.11] (human
chromosome 13, assembly GRCh38) at position 32936732 from the
reference nucleotide G to C.

In VR, a contiguous change is represented using an Allele
object, which is composed of a Location and of the
State at that location.  Location and State are
abstract concepts: VR is designed to accommodate many kinds of
Locations based on sequence position, gene names, cytogentic bands, or
other ways of describing locations. Similarly, State may refer to a
specific sequence change, copy number change, or complex sequence
event.

In this example, we will use a SequenceLocation, which is
composed of a sequence identifier and a SimpleInterval.

In VR, all identifiers are a Compact URI (CURIE) [https://www.w3.org/TR/curie/].  Therefore, NC_000013.11 MUST be
written as the string refseq:NC_000013.11 to make explicit that
this sequence is from RefSeq [https://www.ncbi.nlm.nih.gov/refseq/] .  VR does not restrict
which data sources may be used, but does recommend using prefixes from
identifiers.org [http://identifiers.org].

VR uses Interbase Coordinates.  Interbase coordinates
always use intervals to refer to sequence spans.  For the purposes
of this example, interbase coordinates look like the more familiar
0-based, right-open numbering system.  (Please read about
Interbase Coordinates if you are interested in the
significant advantages of this design choice over other coordinate
systems.)

The SimpleInterval for the position 32936732 is

{
  "end": 32936732,
  "start": 32936731,
  "type": "SimpleInterval"
}





The interval is then ‘placed’ on a sequence to create the
SequenceLocation:

{
  "interval": {
    "end": 32936732,
    "start": 32936731,
    "type": "SimpleInterval"
  },
  "sequence_id": "refseq:NC_000013.11",
  "type": "SequenceLocation"
}





A SequenceState objects consists simply of the replacement sequence, as follows:

{
  "sequence": "C",
  "type": "SequenceState"
}





We are now in a position to construct an Allele object using
the objects defined above:

{
  "location": {
    "interval": {
      "end": 32936732,
      "start": 32936731,
      "type": "SimpleInterval"
    },
    "sequence_id": "refseq:NC_000013.11",
    "type": "SequenceLocation"
  },
  "state": {
    "sequence": "C",
    "type": "SequenceState"
  },
  "type": "Allele"
}





This Allele is a fully-compliant VR object that is parsable using the
VR JSON Schema.


Note

VR is verbose! The goal of VR is to provide a extensible
framework for representation of sequence variation in
computers.  VR objects are readily parsable and have precise
meaning, but are often larger than other representations and
are typically less readable by humans.  This tradeoff is
intentional!






Generate a computed identifer

A key feature of VR-Spec is an easily-implemented algorithm to
generate computed, digest-based identifiers for variation objects.
This algorithm permits organizations to generate the same identifier
for the same allele without prior coordination, which in turn
facilitates sharing, obviates centralized registration services, and
enables identifiers to be used in secure settings (such as diagnostic
labs).

Generating a computed identifier requires that all nested objects also
use computed identifiers.  In this example, the sequence identifier
MUST be transformed into a digest-based identifer as described in
Computed Identifiers.  In practice, implmentations SHOULD
precompute sequence digests or SHOULD use an existing service that
does so. (See Required External Data for a description of data that are
needed to implement VR.)  In this case, refseq:NC_000013.11 maps
to ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT. All VR computed
identifiers begin with the ga4gh prefix and use a type prefix
(SQ, here) to denote the type of object.  The VR sequence
identifier is then substituted directly into the Allele’s location
object:

{
  "location": {
    "interval": {
      "end": 32936732,
      "start": 32936731,
      "type": "SimpleInterval"
    },
    "sequence_id": "ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT",
    "type": "SequenceLocation"
  },
  "state": {
    "sequence": "C",
    "type": "SequenceState"
  },
  "type": "Allele"
}





This, too, is a valid VR Allele.


Note

Using VR sequence identifiers collapses differences between
alleles due to trivial differences in reference naming.  The
same variation reported on NC_000013.11, CM000675.2,
GRCh38:13, GRCh38.p13:13 would appear to be distinct
variation; using a digest identifer will ensure that
variation is reported on a single sequence identifier.
Furthermore, using digest-based sequence identifiers enables
the use of custom reference sequences.



The first step in constructing a computed identifier is to create a
binary digest serialization of the Allele.  Details are provided in
Computed Identifiers.  For this example the binary object looks
like:

'{"location":"v9K0mcjQVugxTDIcdi7GBJ_R6fZ1lsYq","state":{"sequence":"C","type":"SequenceState"},"type":"Allele"}'
(UTF-8 encoded)






Important

The binary serialization is governed by constraints
that guarantee that different implementations will
generate the same binary “blob”.  Do not confuse binary
digest serialization with JSON serialization, which is
used elsewhere with VR schema.



The GA4GH digest for the above blob is computed using the first 192
bits (24 bytes) of the SHA-512 [https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] digest, base64url [https://tools.ietf.org/html/rfc4648#section-5] encoded.
Conceptually, the function is:

base64url( sha512( blob )[:24] )





In this example, the value returned is
n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH.

A GA4GH Computed Identifier has the form:

"ga4gh" ":" <type_prefix> "." <digest>





The type_prefix for a VR Allele is VA, which results in the
following computed identifier for our example:

ga4gh:VA.n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH





Variation and Location objects contain an OPTIONAL _id attribute
which implementations may use to store any CURIE-formatted identifier.
If an implementation returns a computed identifier with objects, the
object might look like the following:

{
  "_id": "ga4gh:VA.n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH",
  "location": {
    "interval": {
      "end": 32936732,
      "start": 32936731,
      "type": "SimpleInterval"
    },
    "sequence_id": "ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT",
    "type": "SequenceLocation"
  },
  "state": {
    "sequence": "C",
    "type": "SequenceState"
  },
  "type": "Allele"
}





This example provides a full VR-compliant Allele with a computed identifier.


Note

The _id attribute is optional.  If it is used, the value
MUST be a CURIE, but it does NOT need to be a GA4GH Computed
Identifier.  Applications MAY choose to implement their own
identifier scheme for private or public use.  For example,
the above _id could be a serial number assigned by an
application, such as acmecorp:v0000123.






What’s Next?

This example has shown a full example for a relatively simple case.
VR provides a framework that will enable much more complex variation.
Please see Future Plans for a discussion of variation classes
that are intened in the near future.

The implementations section lists libraries and packages that
implement VR-Spec.

VR objects are value objects [https://en.wikipedia.org/wiki/Value_object].  An important
consequence of this design choice is that data should be associated
with VR objects via their identifiers rather than embedded within
those objects.  The appendix contains an example of associating
annotations with variation.
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Associating Annotions with VR Objects

This example demonstrates how to associate information with VR
objects.  Although the examples use the GA4GH VR Python Implementation [https://github.com/ga4gh/vr-python/] library, the
principles apply regardless of implementation.

Information is never embedded within VR objects. Instead, it is
associated with those objects by means of their ids. This approach to
annotations scales better in size and distributes better across multiple
data sources.

import collections
from ga4gh.vr import ga4gh_identify, models
from ga4gh.vr.extras.dataproxy import SeqRepoRESTDataProxy
from ga4gh.vr.extras.translator import Translator

# Requires seqrepo REST interface is running on this URL (e.g., using docker image)
seqrepo_rest_service_url = "http://localhost:5000/seqrepo"
dp = SeqRepoRESTDataProxy(base_url=seqrepo_rest_service_url)

tlr = Translator(data_proxy=dp)





# Declare some data as human-readable RS id labels with HGVS expressions
data = (
    ("rs7412C",   "NC_000019.10:g.44908822="),
    ("rs7412T",   "NC_000019.10:g.44908822C>T"),
    ("rs429358C", "NC_000019.10:g.44908684="),
    ("rs429358T", "NC_000019.10:g.44908684T>C")
)





# Parse the HGVS expressions and generate three dicts:
# alleles[allele_id] ⇒ allele object
# rs_names[allele_id] ⇒ rs label
# hgvs_name[allele_id] ⇒ original hgvs expression

# For convenience, also build
# rs_to_id[rs_name] ⇒ allele_id

alleles = {}
rs_names = {}
hgvs_names = collections.defaultdict(lambda: dict())
for rs, hgvs_expr in data:
    allele = tlr.from_hgvs(hgvs_expr)
    allele_id = ga4gh_identify(allele)
    alleles[allele_id] = allele
    hgvs_names[allele_id] = hgvs_expr
    rs_names[allele_id] = rs

rs_to_id = {r: i for i, r in rs_names.items()}





# Now, build a new set of annotations: allele frequencies
# This is more complicated because it maps to a map of frequences
# It should be clear that other frequencies could be easily added here
# or as a separate data source
freqs = {
    "gnomad": {
        "global": {
            rs_to_id["rs7412C"]: 0.9385,
            rs_to_id["rs7412T"]: 0.0615,
            rs_to_id["rs429358C"]: 0.1385,
            rs_to_id["rs429358T"]: 0.8615,
        }
    }
}





# It might be convenient to save these data
# A saved document might have structure like this:
doc = {
    "alleles": alleles,
    "hgvs_names": hgvs_names,
    "rs_names": rs_names,
    "freqs": freqs
}





# For the benefit of pretty printing, let's replace the allele objects with their dict representations
doc["alleles"] = {i: a.as_dict() for i, a in doc["alleles"].items()}
import json
print(json.dumps(doc, indent=2))





{
  "alleles": {
    "ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": {
      "location": {
        "interval": {
          "end": 44908822,
          "start": 44908821,
          "type": "SimpleInterval"
        },
        "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
        "type": "SequenceLocation"
      },
      "state": {
        "sequence": "C",
        "type": "SequenceState"
      },
      "type": "Allele"
    },
    "ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": {
      "location": {
        "interval": {
          "end": 44908822,
          "start": 44908821,
          "type": "SimpleInterval"
        },
        "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
        "type": "SequenceLocation"
      },
      "state": {
        "sequence": "T",
        "type": "SequenceState"
      },
      "type": "Allele"
    },
    "ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": {
      "location": {
        "interval": {
          "end": 44908684,
          "start": 44908683,
          "type": "SimpleInterval"
        },
        "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
        "type": "SequenceLocation"
      },
      "state": {
        "sequence": "T",
        "type": "SequenceState"
      },
      "type": "Allele"
    },
    "ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": {
      "location": {
        "interval": {
          "end": 44908684,
          "start": 44908683,
          "type": "SimpleInterval"
        },
        "sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
        "type": "SequenceLocation"
      },
      "state": {
        "sequence": "C",
        "type": "SequenceState"
      },
      "type": "Allele"
    }
  },
  "hgvs_names": {
    "ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": "NC_000019.10:g.44908822=",
    "ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": "NC_000019.10:g.44908822C>T",
    "ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": "NC_000019.10:g.44908684=",
    "ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": "NC_000019.10:g.44908684T>C"
  },
  "rs_names": {
    "ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": "rs7412C",
    "ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": "rs7412T",
    "ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": "rs429358C",
    "ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": "rs429358T"
  },
  "freqs": {
    "gnomad": {
      "global": {
        "ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": 0.9385,
        "ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": 0.0615,
        "ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": 0.1385,
        "ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": 0.8615
      }
    }
  }
}





          

      

      

    

  

    
      
          
            
  
Design Decisions

VR contributors confronted numerous trade-offs in developing this
specification. As these trade-offs may not be apparent to outside
readers, this section highlights the most significant ones and the
rationale for our design decisions, including:


Variation Rather than Variant

The abstract Variation class is intentionally not labeled
“Variant”, despite this being the primary term used in other molecular
variation exchange formats (e.g. Variant Call Format, HGVS Sequence
Variant Nomenclature). This is because the term “Variant” as used in
the Genetics community is intended to describe discrete changes in
nucleotide / amino acid sequence. “Variation”, in contrast, captures
other classes of molecular variation, including epigenetic alteration
and transcript abundance. Capturing these other classes of variation
is a future goal of the VR-Spec, as there are many
annotations that will require these variation classes as the subject.




Allele Rather than Variant

The most primitive sequence assertion in VR is the Allele
entity. Colloquially, the words “allele” and “variant” have similar
meanings and they are often used interchangeably. However, the VR
contributors believe that it is essential to distinguish the state of
the sequence from the change between states of a sequence. It is
imperative that precise terms are used when modelling data. Therefore,
within VR, Allele refers to a state and “variant” refers to the change
from one Allele to another.

The word “variant”, which implies change, makes it awkward to refer to
the (unchanged) reference allele. Some systems will use an HGVS-like
syntax (e.g., NC_000019.10:g.44906586G>G or NC_000019.10:g.44906586=)
when referring to an unchanged residue. In some cases, such “variants”
are even associated with allele frequencies. Similarly, a predicted
consequence is better associated with an allele than with a variant.




Alleles are Fully Justified

In order to standardize the presentation of sequence variation, computed ids from
the VR specification require that Alleles be fully justified from the description
of the NCBI Variant Overprecision Correction Algorithm (VOCA) [https://www.biorxiv.org/content/10.1101/537449v3.full]. Furthermore,
normalization rules must be identical for all sequence types; although this
need not be a strict requirement, there is no reason to normalize using
different strategies based on sequence type.

The choice of algorithm was relatively straightforward: VOCA is
published, easily understood, easily implemented, and
covers a wide range of cases.

The choice to fully justify is a departure from other common variation
formats. The HGVS nomenclature recommendations, originally published in
1998, require that alleles be right normalized (3’ rule) [https://varnomen.hgvs.org/recommendations/general/] on all sequence
types. The Variant Call Format (VCF), released as a PDF specification
in 2009, made the conflicting choice to write variants left (5’)
normalized [https://genome.sph.umich.edu/wiki/Variant_Normalization#Definition] and anchored to the previous nucleotide.

Fully-justified alleles represent an alternate approach. A fully-justified
representation does not make an arbitrary choice of where a variant truly
occurs in a low-complexity region, but rather describes the final and
unambiguous state of the resultant sequence.




Interbase Coordinates

Sequence ranges use an interbase coordinate system. Interbase
coordinate conventions are used in this terminology because they
provide conceptual consistency that is not possible with residue-based
systems.


Important

The choice of what to count–residues versus
inter-residue positions–has significant semantic
implications for coordinates. Because interbase
coordinates and the corresponding 0-based
residue-counted coordinates are numerically identical
in some circumstances, uninitiated readers often
conflate the choice of numerical base with the choice
of residue or inter-residue counting. Whereas the
choice of numerical base is inconsequential, the
semantic advantages of interbase are significant.



When humans refer to a range of residues within a sequence, the most
common convention is to use an interval of ordinal residue positions
in the sequence. While natural for humans, this convention has several
shortcomings when dealing with sequence variation.

For example, interval coordinates are interpreted as exclusive
coordinates for insertions, but as inclusive coordinates for
substitutions and deletions; in effect, the interpretation of
coordinates depends on the variant type, which is an unfortunate
coupling of distinct concepts.




Modelling Language

The VR collaborators investigated numerous options for modelling data,
generating code, and writing the wire protocol. Required and desired
selection criteria included:


	language-neutral – or at least C/C++, java, python


	high-quality tooling/libraries


	high-quality code generation


	documentation generation


	
	supported constructs and data types

	
	typedefs/aliases


	enums


	lists, maps, and maps of lists/maps


	nested objects










	protocol versioning (but not necessarily automatic adaptation)




Initial versions of the VR logical model were implemented in UML,
protobuf, and swagger/OpenAPI, and JSON Schema. We have implemented
our schema in JSON Schema. Nonetheless, it is anticipated that some
adopters of the VR logical model may implement the specification in
other protocols.




Serialization Strategy

There are many packages and proposals that aspire to a canonical form
for json in many languages. Despite this, there are no ratified or de
facto winners. Many packages have similar names, which makes it
difficult to discern whether they are related or not (often
not). Although some packages look like good single-language
candidates, none are ready for multi-language use. Many seem
abandoned. The need for a canonical json form is evident, and there
was at least one proposal for an ECMA standard.

Therefore, we implemented our own serialization format, which is very similar to Gibson Canonical
JSON [http://gibson042.github.io/canonicaljson-spec/] (not to be confused with OLPC Canonical JSON [http://wiki.laptop.org/go/Canonical_JSON]).







          

      

      

    

  

    
      
          
            
  
Development Process


Versioning

VR-Spec will follow GA4GH recommendation for semantic versioning [https://docs.google.com/document/d/1UUJSnsPw32W5r1jaJ0vI11X0LLLygpAC9TNosjSge_w/edit#heading=h.h5gpuoaxcrgy]
with semver 2.0. The VR-Spec GitHub repository will maintain the
latest development code on the master branch for community review (see
Release Cycle).




Release Cycle


Planned Features

Feature requests from the community are made through the generation of
GitHub issues on the VR-Spec repository [https://github.com/ga4gh/vr-spec/issues], which are open for
public review and discussion. Feature requests identified to support
an unmet need by the existing VR-Spec are scheduled for discussion
in our weekly VR calls. These discussions are used to inform whether
or not a feature will be planned for development. The Project
Leadership is responsible for making the final
determination on whether a feature is to be added to VR-Spec.




Requirements Gathering

Once a feature is planned for production, an issue requesting
community feedback on use cases and technical requirements will be
constructed (see example requirement issues [https://github.com/ga4gh/vr-spec/labels/requirements]).




Feature Development

Features will be developed to meet gathered requirements. Features
ready for public review MAY be merged into the master branch by pull
request through review and approval by at least one (non-authoring)
Project Maintainer. Merged commits MAY be
tagged as alpha releases when needed.




Version Review and Release

After completion of all planned features for a new minor or major
version, a request for community review will be indicated by a beta
release of the new version. Community stakeholders involved in the
feature requests and requirements gathering for the included features
are notified by Project Maintainers for review and approval of the
release. After a community review period of at least two weeks, the
Project Leadership will review and address any raised concerns for the
reviewed version.

After passing review, new minor versions are released to
production. If any features in the reviewed version are deemed to be
significant additions to the specification by the Project Leadership, or if
it is a major version change, instead a release candidate version will
be released and submitted for GA4GH product approval. After approval,
the new version is released to production.






Leadership


Project Leadership

As a product of the Genomic Knowledge Standards (GKS) Work Stream,
project leadership is comprised of the Work Stream leadership [https://ga4gh-gks.github.io/]:


	Alex Wagner (@ahwagner [https://github.com/ahwagner])


	Andy Yates (@andrewyatz [https://github.com/andrewyatz])


	Bob Freimuth (@rrfreimuth [https://github.com/rrfreimuth])


	Javier Lopez (@javild [https://github.com/javild])


	Larry Babb (@larrybabb [https://github.com/larrybabb])


	Matt Brush (@mbrush [https://github.com/mbrush])


	Melissa Konopko (@MKonopko [https://github.com/MKonopko])


	Reece Hart (@reece [https://github.com/reece])







Project Maintainers

Project maintainers are the leads of the GKS Variation Representation working group:


	Alex Wagner (@ahwagner [https://github.com/ahwagner])


	Larry Babb (@larrybabb [https://github.com/larrybabb])


	Reece Hart (@reece [https://github.com/reece])












          

      

      

    

  

    
      
          
            
  
Future Plans


Overview

The VR-Spec covers a fundamental subset of data types to represent
variation, thus far predominantly related to the replacement of a
subsequence in a reference sequence. Increasing its applicability will
require supporting more complex types of variation, including:


	alternative coordinate types such as nested ranges


	feature-based coordinates such as genes, cytogenetic bands, and exons


	haplotypes and genotypes


	copy number variation


	structural variation


	mosaicism and chimerism


	rule-based variation





[image: ../_images/schema-future.png]
An illustration of planned components for the VR Schema.
Version 1.0 components are colored green. Components that are
undergoing testing and evaluation and are candidates for the next
release cycle are colored yellow. Components that are planned but
still undergoing requirement gathering and initial development are
colored red. The VR Schema requires the use of multiple composite
objects, which are grouped under four abstract classes:
Variation, Location (Abstract Class), State (Abstract Class), and
Interval (Abstract Class). These classes and their relationships to the
representation of Variation are illustrated here. All classes have
a string type. Dashed borders denote abstract classes. Abstract
classes are not instantiated. Thin solid borders denote classes
that may be instantiated but are not identifiable. Bold borders
denote identifiable objects (i.e., may be serialized and identified
by computed identifier). Solid arrow lines denoted
inheritance. Subclasses inherit all attributes from their
parent. Inherited attributes are not shown.



The following sections provide a preview of planned concepts under way
to address a broader representation of variation.




Intervals and Locations

VR-Spec uses Interval (Abstract Class) and Location (Abstract Class) subclasses to define
where variation occurs.  The schema is designed to be extensible to
new kinds of Intervals and Locations in order to support, for example,
fuzzy coordinates or feature-based locations.


NestedInterval

Biological definition

None

Computational definition

An Interval (Abstract Class) comprised of an inner and outer
SimpleInterval. The NestedInterval allows for the definition
of “fuzzy” range endpoints by designating a potentially included
region (the outer SimpleInterval) and required included region (the
inner SimpleInterval).

Information model



	Field

	Type

	Limits

	Description





	type

	string

	1..1

	Interval type; MUST be set to ‘NestedInterval’



	inner

	SimpleInterval

	1..1

	known interval



	outer

	SimpleInterval

	1..1

	potential interval






Implementation guidance


	Implementations MUST enforce values 0 ≤ outer.start ≤ inner.start ≤
inner.end ≤ outer.end. In the case of double-stranded DNA, this
constraint holds even when a feature is on the complementary strand.







ComplexInterval

Biological definition

Representation of complex coordinates based on relative locations or
offsets from a known location. Examples include “left of” a given
position and intronic positions measured from intron-exon junctions.

Computational definition

Under development.

Information model

Under development.




CytobandLocation

Biological definition

Imprecise chromosomal locations based on chromosomal staining.

Computational definition

Cytogenetic bands are defined by a chromosome name, band, and
sub-band. In VR-Spec, a cytogenetic location is an interval on a
single chromsome with a start and end band and subband.

Information model

Under development.




GeneLocation

Biological definition

The symbolic location of a gene.

Computational definition

A gene location is made by reference to a gene identifier from NCBI,
Ensembl, HGNC, or other public trusted authority.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Location Id; MUST be unique within document



	type

	string

	1..1

	Location type; MUST be set to ‘GeneLocation’



	gene_id

	CURIE

	1..1

	CURIE-formatted gene identifier using NCBI numeric gene id.






Notes


	gene_id MUST be specified as a CURIE, using a CURIE prefix of
“NCBI” and CURIE reference with the numeric gene id. Other trusted
authorities MAY be permitted in future releases.




Implementation guidance


	GeneLocations MAY be converted to SequenceLocation using
external data. The source of such data and mechanism for
implementation is not defined by this specification.









State Classes

Additional State (Abstract Class) concepts that are being planned for future
consideration in the specification.


CNVState


Note

This concept is being refined. Please comment at https://github.com/ga4gh/vr-spec/issues/46.



Biological definition

Variations in the number of copies of a segment of DNA.  Copy number
variations cover copy losses or gains and at known or unknown
locations (including tandem repeats).  Variations MAY occur at precise
SequenceLocations, within nested intervals, or at GeneLocations.
There is no lower or upper bound on CNV sizes.

Computational definition

Under development.

Information model



	Field

	Type

	Limits

	Description





	type

	string

	1..1

	State type; MUST be set to ‘CNVState’



	location

	Location (Abstract Class)

	1..1

	the Location of the copy (‘null’ if unknown)



	min_copies

	int

	1..1

	The minimum number of copies



	max_copies

	int

	1..1

	The maximum number of copies











Variation Classes

Additional Variation concepts that are being planned for future
consideration in the specification. See Variation for more
information.


Haplotypes

Biological definition

A specific combination of Alleles that occur together on single
sequence in one or more individuals.

Computational definition

A specific combination of non-overlapping Alleles that
co-occur on the same reference sequence.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Variation Id; MUST be unique within document



	type

	string

	1..1

	Variation type; MUST be set to ‘Haplotype’



	location

	Location (Abstract Class)

	1..1

	Where Haplotype is located



	completeness

	enum

	1..1

	Declaration of completeness of the Haplotype definition.
Values are:


	UNKNOWN: Other in-phase Alleles may exist.


	PARTIAL: Other in-phase Alleles exist but are unspecified.


	COMPLETE: The Haplotype declares a complete set of Alleles.







	alleles

	CURIE[]

	2..*

	List of Alleles that comprise this Haplotype.






Implementation guidance


	The Haplotype location (as specified by the location_id) MAY refer
to a subsequence of the reference sequence, such as a subsequence of
an entire chromosome.


	All Alleles in a Haplotype MUST be defined on the same reference
sequence as specified by location_id.


	Alleles within a Haplotype MUST not intersect (“intersect” is
defined in SimpleInterval).


	All Location Intervals are to be interpreted in the context of the
underlying reference sequence, irrespective of insertions or
deletions by other “upstream” Alleles within the Haplotype.


	When reporting an Haplotype, completeness MUST be set according to
these criteria:


	“COMPLETE” only if the entire reference sequence was assayed and
all in-phase Alleles are reported in this Haplotype.


	“PARTIAL” only if the entire reference sequence was assayed,
other in-phase Alleles exist, and are NOT reported in this
Haplotype. This is an assertion of unreported variation.


	“UNKNOWN” otherwise. This value is the default and SHOULD be used
if neither “COMPLETE” nor “PARTIAL” applies. These cases include,
but are not limited to, assays that do not fully cover the
reference sequence and an unwillingness by the reporter to
declare the existence or absence of other in-phase Alleles.






	A Haplotype with an empty list of Alleles and completeness set to
“COMPLETE” is an assertion of an unchanged reference sequence.


	When projecting a Haplotype from one sequence to a larger sequence,
a “complete” Haplotype becomes an “unknown” Haplotype on the target
sequence. Furthermore, this change is not reversible.




Notes


	Alleles within a Haplotype are, by definition, “cis” or
“in-phase”. (“In phase” and “cis” refer to features that exist on
instances of covalently bonded sequences.)


	Haplotypes are often given names, such as ApoE3 or A*33:01 for
convenience.



	Examples: A*33:01:01 (IMGT/HLA) [https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/get_allele_hgvs.cgi?A*33:01:01]









	When used to report Haplotypes, the completeness property enables
data providers (e.g, diagnostic labs) to indicate that other Alleles
exist, may exist, or do not exist. Data providers may not assay the
full reference sequence or may withhold other in-phase Alleles in
order to protect patient privacy.


	When used to define Haplotypes, the completeness property enables
implementations to permit (PARTIAL) or preclude (COMPLETE) the
existence of other variation when matching a Haplotype to a set of
observed Alleles.


	Data consumers MAY wish to use the completeness property in order to
provide accurate context for Allele interpretation or to select data
used in association studies.




Sources


	ISOGG: Haplotype [http://isogg.org/wiki/Haplotype] — A haplotype
is a combination of alleles (DNA sequences) at different places (
loci [http://isogg.org/wiki/Locus]) on the chromosome [http://isogg.org/wiki/Chromosome] that are transmitted
together. A haplotype MAY be one locus, several loci, or an entire
chromosome depending on the number of recombination events that have
occurred between a given set of loci.


	SO: haplotype (SO:0001024) [http://www.sequenceontology.org/browser/current_svn/term/SO:0001024]
— A haplotype is one of a set of coexisting sequence variants of a
haplotype block.


	GENO: Haplotype (GENO:0000871) [http://purl.obolibrary.org/obo/GENO_0000871] - A set of two or
more sequence alterations on the same chromosomal strand that tend
to be transmitted together.







Genotypes

Biological definition

The genetic state of an organism, whether complete (defined over the
whole genome) or incomplete (defined over a subset of the genome).

Computational definition

A list of Haplotypes.

Information model



	Field

	Type

	Limits

	Description





	_id

	CURIE

	0..1

	Variation Id; MUST be unique within document



	type

	string

	1..1

	Variation type; MUST be set to ‘Genotype’



	completeness

	enum

	1..1

	Declaration of completeness of the Haplotype definition.
Values are:


	UNKNOWN: Other Haplotypes may exist.


	PARTIAL: Other Haplotypes exist but are unspecified.


	COMPLETE: The Genotype declares a complete set of Haplotypes.







	haplotypes

	CURIE[]

	2..*

	List of Haplotypes; length MUST agree with ploidy of genomic region






Implementation guidance


	Haplotypes in a Genotype MAY occur at different locations or on
different reference sequences. For example, an individual may have
haplotypes on two population-specific references.


	Haplotypes in a Genotype MAY contain differing numbers of Alleles or
Alleles at different Locations.




Notes


	The term “genotype” has two, related definitions in common use. The
narrower definition is a set of alleles observed at a single
location and with a ploidy of two, such as a pair of single residue
variants on an autosome. The broader, generalized definition is a
set of alleles at multiple locations and/or with ploidy other than
two.The VR-Spec Genotype entity is based on this broader definition.


	The term “diplotype” is often used to refer to two haplotypes. The
VR-Spec Genotype entity subsumes the conventional definition of
diplotype. Therefore, the VR-Spec model does not include an explicit
entity for diplotypes. See this note for a
discussion.


	The VR-SPec model makes no assumptions about ploidy of an organism
or individual. The number of Haplotypes in a Genotype is the
observed ploidy of the individual.


	In diploid organisms, there are typically two instances of each
autosomal chromosome, and therefore two instances of sequence at a
particular location. Thus, Genotypes will often list two
Haplotypes. In the case of haploid chromosomes or
haploinsufficiency, the Genotype consists of a single Haplotype.


	A consequence of the computational definition is that Haplotypes at
overlapping or adjacent intervals MUST NOT be included in the same
Genotype. However, two or more Alleles MAY always be rewritten as an
equivalent Allele with a common sequence and interval context.


	The rationale for permitting Genotypes with Haplotypes defined on
different reference sequences is to enable the accurate
representation of segments of DNA with the most appropriate
population-specific reference sequence.




Sources

SO: Genotype (SO:0001027) [http://www.sequenceontology.org/browser/current_svn/term/SO:0001027]
— A genotype is a variant genome, complete or incomplete.


Note

Genotypes represent Haplotypes with arbitrary ploidy
The VR-Spec defines Haplotypes as a list of Alleles, and Genotypes as
a list of Haplotypes. In essence, Haplotypes and Genotypes represent
two distinct dimensions of containment: Haplotypes represent the “in
phase” relationship of Alleles while Genotypes represents sets of
Haplotypes of arbitrary ploidy.

There are two important consequences of these definitions: There is no
single-location Genotype. Users of SNP data will be familiar with
representations like rs7412 C/C, which indicates the diploid state at
a position. In the VR-Spec, this is merely a special case of a
Genotype with two Haplotypes, each of which is defined with only one
Allele (the same Allele in this case).  The VR-Spec does not define a
diplotype type. A diplotype is a special case of a VR-Spec Genotype
with exactly two Haplotypes. In practice, software data types that
assume a ploidy of 2 make it very difficult to represent haploid
states, copy number loss, and copy number gain, all of which occur
when representing human data. In addition, assuming ploidy=2 makes
software incompatible with organisms with other ploidy. The VR-Spec
makes no assumptions about “normal” ploidy.

In other words, the VR-Spec does not represent single-position
Genotypes or diplotypes because both concepts are subsumed by the
Allele, Haplotype, and Genotypes entities.






Translocations


Note

This concept is being refined. Please comment at https://github.com/ga4gh/vr-spec/issues/103



Biological definition

The aberrant joining of two segments of DNA that are not typically
contiguous.  In the context of joining two distinct coding sequences,
translocations result in a gene fusion, which is also covered by this
VR-Spec definition.

Computational definition

A joining of two sequences is defined by two Location (Abstract Class) objects
and an indication of the join “pattern” (advice needed on conventional
terminology, if any).

Information model

Under consideration. See https://github.com/ga4gh/vr-spec/issues/28.

Examples

t(9;22)(q34;q11) in BCR-ABL






Rule-based Variation

Some variations are defined by categorical concepts, rather than specific
locations and states. These variations go by many terms, including
categorical variants, bucket variants, container variants, or
variant classes. These forms of variation are not described by any
broadly-recognized variation format, but modeling them is a key requirement
for the representation of aggregate variation descriptions as commonly
found in biomedical literature. Our future work will focus on the formal
specification for representing these variations with sets of rules, which
we currently call Rule-based Variation.


RuleLocation

RuleLocation is a subclass of Location (Abstract Class) intended to capture locations
defined by rules instead of specific contiguous sequences. This includes
locations defined by sequence characteristics, e.g. microsatellite
regions.




RuleState

RuleState is a subclass of State (Abstract Class) intended to capture states defined
by categorical rules instead of sequence states. This includes gain- /
loss-of-function, oncogenic, and truncating variation.






Variation Sets


Note

The VR-Spec anticipates the need for sets of variation.
Sets MAY be static (immutable) or dynamic (changeable), and
might be defined manually, by an equivalence function, or
by an expansion functions.  Furthermore, equivalence and
expansion functions might be user-defined.  This concept is
being refined. Please comment at
https://github.com/ga4gh/vr-spec/issues/15









          

      

      

    

  

    
      
          
            
  
Proposal for GA4GH-wide Computed Identifier Standard

This appendix describes a proposal for creating a GA4GH-wide standard
for serializing data, computing digests on serialized data, and
constructing CURIE identifiers from the digests.  Essentially, it is a
generalization of the Computed Identifiers section.

This standard is proposed now because the VR Specification needs a
well-defined mechanism for generating identifiers.  Changing the
identifier mechanism later will create significant issues for VR
adopters.


Background

The GA4GH mission entails structuring, connecting, and sharing data
reliably. A key component of this effort is to be able to identify
entities, that is, to associate identifiers with entities. Ideally,
there will be exactly one identifier for each entity, and one entity
for each identifier.  Traditionally, identifiers are assigned to
entities, which means that disconnected groups must coordinate on
identifier assignment.

The computed identifier scheme proposed in the VR Specification
computes identifiers from the data itself.  Because identifers depend
on the data, groups that independently generate the same variation
will generate the same computed identifier for that entity, thereby
obviating centralized identifier systems and enabling identifiers to
be used in isolated settings such as clinical labs.

The computed identifier mechanism is broadly applicable and useful to
the entire GA4GH ecosystem.  Adopting a common identifier scheme will
make interoperability of GA4GH entities more obvious to consumers,
will enable the entire organization to share common entity definitions
(such as sequence identifiers), and will enable all GA4GH products to
share tooling that manipulate identified data.  In short, it provides
an important consistency within the GA4GH ecosystem.

As a result, we are proposing that the computed identifier scheme
described in the VR specification be considered for adoption as a
GA4GH-wide standard.  If the proposal is accepted by the GA4GH
executive committee, the current VR proposal will stand as-is; if the
proposal is rejected, the VR proposal will be modified to rescope the
computed identifier mechanism to VR and under admininstration of the
VR team.




Proposal

The following algorithmic processes, described in depth in the VR
Computed Identifiers proposal, are included in this proposal by
reference:


	GA4GH Digest Serialization is the process of converting an
object to a canonical binary form based on JSON and inspired by
similar (but unratified) JSON standards.  This serialization for is
used only for the purposes of computing a digest.


	GA4GH Truncated Digest is a convention for using SHA-512 [https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf],
truncated to 24 bytes, and encoding using base64url [https://tools.ietf.org/html/rfc4648#section-5].


	GA4GH Identification is the CURIE-based syntax for constructing
a namespaced and typed identifier for an object.







Type Prefixes

A GA4GH identifier is proposed to be constructed according to this syntax:

"ga4gh" ":" type_prefix "." digest





The digest is computed as described above. The type_prefix is a
short alphanumeric code that corresponds to the type of object being
represented.  If this propsal is accepted, this “type prefix map”
would be administered by GA4GH.  (Currently, this map is maintained in
a YAML file within the vr-spec repository, but it would be relocated
on approval of this proposal.)

We propose the following guidelines for type prefixes:


	Prefixes SHOULD be short, approximately 2-4 characters.


	Prefixes SHOULD be for concrete types, not polymorphic parent classes.


	A prefix MUST map 1:1 with a schema type.


	Variation Representation types SHOULD start with V.


	Variation Annotation types SHOULD start with A.







Administration

If accepted, administration of these guidelines should be transferred
to a technical steering committee.  If not accepted, the VR team will
assume administration of the existing prefixes.







          

      

      

    

  

    
      
          
            
  
Implementations

The libraries and applications listed below have implemented the GA4GH
Variation Representation Specification to store and exchange variation
data. They are listed here to demonstrate VR utility and as a resource
for those considering implementing VR-Spec. These packages are not
supported by GA4GH.


Libraries

Libraries facilitate the use of the VR-Spec, but do not implement a
particular use or application.  Although there is only one library
currently, it is expected that others will eventually appear as
VR-Spec is adopted.


vr-python: GA4GH VR Python Implementation

The GA4GH VR Python Implementation [https://github.com/ga4gh/vr-python/] is an implementation for the GA4GH VR-Spec.  It
supports all types covered by the VR-Spec, implements Allele
normalization and computed identifier generation, and provides “extra”
features such as translation from HGVS, SPDI, and VCF formats.  See
vr-python notebooks [https://github.com/ga4gh/vr-python/blob/master/notebooks] for
usage examples.

VR Specification [https://github.com/ga4gh/vr-python/] MAY be used without using the Python implementation.






Applications and Web Services

Applications implement VR-Spec to support specific use cases.
Projects known to implement VR-Spec are listed below. Descriptions are
provided by the application authors.


ClinGen Allele Registry

ClinGen Allele Registry 1 provides identifiers for more than 900
million variants. Each identifier (canonical allele identifiers:
CAIds) is an abstract concept which represents a group of identical
variants based on alignment. Identifiers are retrievable irrespective
of the reference sequence and normalization status.

As a Driver Project for GA4GH, ClinGen Allele Registry [https://reg.clinicalgenome.org] implements two standards: RefGet
and VR in the first implementation.

The API endpoints that support data retrieval in this two key
standards are summarized in the following table.

HOST: https//reg.clinicalgenome.org/ [https://reg.clinicalgenome.org]










	API Path

	Parameters

	Response Format

	Example

	




	RefGet

	
	
	
	


	[GET] /sequence/service-info

	-

	Refget v1.0.0

	/sequence/service-info [https://reg.clinicalgenome.org/sequence/service-info]

	


	[GET] /sequence/{id}

	id => TRUNC512 digest for reference sequence

	Refget v1.0.0

	/sequence/vYfm5TA_F-_BtIGjfzjGOj8b6IK5hCTx [https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul?start=2232131&end=2232145]

	


	[GET] /sequence/{id}/metadata

	id => TRUNC512 digest for reference sequence

	Refget v1.0.0

	/sequence/vYfm5TA_F-_BtIGjfzjGOj8b6IK5hCTx/metadata [https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul/metadata]

	


	VR

	
	
	
	


	[GET] /vrAllele?hgvs={hgvs}

	hgvs => HGVS expression

	VR v1.0

	/vrAllele?hgvs=NC_000007.14:g.55181320A>T [https://reg.clinicalgenome.org/vrAllele?hgvs=NC_000007.14:g.55181320A%3ET]  /vrAllele?hgvs=NC_000007.14:g.55181220del [https://reg.clinicalgenome.org/vrAllele?hgvs=NC_000007.14:g.55181220del]

	





Support for GA4GH refget and VR specs provided in ClinGen Allele
Registry is independent from VR-Python. Support for this community
standards is implemented in ClinGen Allele Registry through extension
of code written in C++.




BRCA Exchange

BRCA Exchange 2 proposes an API endpoint which will share the variant
list in VR JSON model.  Behind the scenes, all variants will be
represented according to VR specification, in a separate table of the
BRCA Exchange database, and the contents of this table will be served
by the BRCA Exchange API.  A stand-alone executable will leverage
these data to integrate the BRCA Exchange variant set with the ClinGen
allele registry.




VICC Meta-knowledgebase

The Variant Interpretation for Cancer Consortium (VICC;
https://cancervariants.org) has a collection of ~20K clinical
interpretations associated with ~3,500 somatic variations and variation
classes in a harmonized meta-knowledgebase 3 (see documentation at
http://docs.cancervariants.org). Each interpretation is be linked to
one or more variations or a variation class.

As a Driver Project for GA4GH, VICC is contributing to and/or
adopting three GA4GH standards: VR, Variant Annotation (VA), and the
Data Use Ontology (DUO). VICC supports queries on all VR computed
identifiers at the searchAssociations endpoint (vicc-docs [https://search.cancervariants.org/api/v1/ui/#!/Associations/searchAssociations]).
Features associated with each interpretation are represented as VR-spec
objects.


	Example queries:

	
	Allele: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VA.mJbjSsW541oOsOtBoX36Mppr6hMjbjFr


	SequenceLocation: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:SL.gJeEs42k4qeXOKy9CJ515c0v2HTu8s4K


	Text: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VT.9Wer7KrxALcPRDRGVKOEzf9ZEKZpOKK0








References:


	1

	Pawliczek P, Patel RY, et al. ClinGen Allele Registry links
information about genetic variants. Hum Mutat 11
(2018). doi:10.1002/humu.23637 [https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23637]



	2

	Cline, M.S., et al.  BRCA Challenge: BRCA Exchange as a global resource for
variants in BRCA1 and BRCA2. PLoS Genet. 2018 Dec 26;14(12):e1007752.
doi:10.1371/journal.pgen.1007752 [https://www.doi.org/10.1371/journal.pgen.1007752]



	3

	Wagner, A.H., et al. A harmonized meta-knowledgebase of
clinical interpretations of cancer genomic variants. bioRxiv
366856 (2018). doi:10.1101/366856 [https://doi.org/10.1101/366856]













          

      

      

    

  

    
      
          
            
  
Truncated Digest Collision Analysis

The GA4GH Digest uses a truncated SHA-512 digest in order to generate a
unique identifier based on data that defines the object. This notebook
discusses the choice of SHA-512 over other digest methods and the choice
of truncation length.

Source: Reece Hart,
CC-BY [https://creativecommons.org/licenses/by/4.0/]


Conclusions


	The computational time for SHA-512 is similar to that of other digest
methods. Given that it is believed to distribute input bits more
uniformly with no increased computational cost, it should be
preferred for our use (and likely most uses).


	24 bytes (192 bits) of digest is ample for VR uses. Arguably, we
could choose much smaller without significant risk of collision.




import hashlib
import math
import timeit

from IPython.display import display, Markdown

from ga4gh.vr.extras.utils import _format_time

algorithms = {'sha512', 'sha1', 'sha256', 'md5', 'sha224', 'sha384'}










Digest Timing

This section provides a rationale for the selection of SHA-512 as the
basis for the Truncated Digest.

def blob(l):
    """return binary blob of length l (POSIX only)"""
    return open("/dev/urandom", "rb").read(l)

def digest(alg, blob):
    md = hashlib.new(alg)
    md.update(blob)
    return md.digest()

def magic_run1(alg, blob):
    t = %timeit -o digest(alg, blob)
    return t

def magic_tfmt(t):
    """format TimeitResult for table"""
    return "{a} ± {s} ([{b}, {w}])".format(
        a = _format_time(t.average),
        s = _format_time(t.stdev),
        b = _format_time(t.best),
        w = _format_time(t.worst),
    )





blob_lengths = [100, 1000, 10000, 100000, 1000000]
blobs = [blob(l) for l in blob_lengths]





table_rows = []
table_rows += [["algorithm"] + list(map(str,blob_lengths))]
table_rows += [["-"] * len(table_rows[0])]
for alg in sorted(algorithms):
    r = [alg]
    for i in range(len(blobs)):
        blob = blobs[i]
        t = timeit.timeit(stmt='digest(alg, blob)', setup='from __main__ import alg, blob, digest', number=1000)
        r += [_format_time(t)]
    table_rows += [r]
table = "\n".join(["|".join(map(str,row)) for row in table_rows])
display(Markdown(table))















	algorithm

	100

	1000

	10000

	100000

	1000000





	md5

	1.23 ms

	2.7 ms

	17.6 ms

	147 ms

	1.46 s



	sha1

	1.24 ms

	2.28 ms

	12.4 ms

	110 ms

	1.08 s



	sha224

	1.51 ms

	3.66 ms

	25.2 ms

	235 ms

	2.33 s



	sha256

	1.51 ms

	3.62 ms

	25.6 ms

	241 ms

	2.55 s



	sha384

	1.46 ms

	4.01 ms

	18.9 ms

	168 ms

	1.71 s



	sha512

	1.47 ms

	3.13 ms

	18.3 ms

	165 ms

	1.63 s






Conclusion: SHA-512 computational time is similar to that of other
digest methods.

This is result was not expected initially. On further research, there is
a clear explanation: The SHA-2 series of digests (which includes
SHA-224, SHA-256, SHA-384, and SHA-512) is defined using 64-bit
operations. When an implementation is optimized for 64-bit systems (as
used for these timings), the number of cycles is essentially halved when
compared to 32-bit systems and digests that use 32-bit operations. SHA-2
digests are indeed much slower than SHA-1 and MD5 on 32-bit systems, but
such legacy platforms is not relevant to the Truncated Digest.






Collision Analysis

Our question: For a hash function that generates digests of length b
(bits) and a corpus of m messages, what is the probability p that there
exists at least one collision? This is the so-called Birthday Problem
[6].

Because analyzing digest collision probabilities typically involve
choices of mathematical approximations, multiple “answers” appear
online. This section provides a quick review of prior work and extends
these discussions by focusing the choice of digest length for a desired
collision probability and corpus size.

Throughout the following, we’ll use these variables:


	\(P\) = Probability of collision


	\(P'\) = Probability of no collision


	\(b\) = digest size, in bits


	\(s\) = digest space size, \(s = 2^b\)


	\(m\) = number of messages in corpus




The length of individual messages is irrelevant.


References


	[1] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf


	[2] https://tools.ietf.org/html/rfc3548#section-4


	[3] http://stackoverflow.com/a/4014407/342839


	[4] http://stackoverflow.com/a/22029380/342839


	[5] http://preshing.com/20110504/hash-collision-probabilities/


	[6] https://en.wikipedia.org/wiki/Birthday_problem


	[7] https://en.wikipedia.org/wiki/Birthday_attack







Background: The Birthday Problem

Directly computing the probability of one or more collisions, \(P\),
in a corpus is difficult. Instead, we first seek to solve for
\(P'\), the probability that a collision does not exist (i.e., that
the digests are unique). Because are only two outcomes,
\(P + P' = 1\) or, equivalently, \(P = 1 - P'\).

For a corpus of size \(m=1\), the probabability that the digests of
all \(m=1\) messages are unique is (trivially) 1:


\[P' = s/s = 1\]

because there are \(s\) ways to choose the first digest from among
\(s\) possible values without a collision.

For a corpus of size \(m=2\), the probabability that the digests of
all \(m=2\) messages are unique is:


\[P' = 1 \times (\frac{s-1}{s})\]

because there are \(s-1\) ways to choose the second digest from
among \(s\) possible values without a collision.

Continuing this logic, we have:


\[P' = \prod\nolimits_{i=0}^{m-1} \frac{(s-i)}{s}\]

or, equivalently,


\[P' = \frac{s!}{s^m \cdot (s-m)!}\]

When the size of the corpus becomes greater than the size of the digest
space, the probability of uniques is zero by the pigeonhole principle.
Formally, the above equation becomes:


\[\begin{split}P' = \left\{
        \begin{array}{ll}
            1    &    \text{if }m = 0 \\
            \prod\nolimits_{i=0}^{m-1} \frac{(s-i)}{s}    &    \text{if }1 \le m\le s\\
            0    &    \text{if }m \gt s
        \end{array}
     \right.\end{split}\]

For the remainder of this section, we’ll focus on the case where
\(1 \le m \ll s\). In addition, notice that the brute force
computation is not feasible in practice because \(m\) and \(s\)
will be very large (both \(\gg 2^9\)).




Approximation #1: Taylor approximation of terms of P’

The Taylor series expansion of the exponential function is


\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...\]

For \(|x| \ll 1\), the expansion is dominated by the first terms and
therecore \(e^x \approx 1 + x\).

In the above expression for \(P'\), note that the product term
\((s-i)/s\) is equivalent to \(1-i/s\). Combining this with the
Taylor expansion, where \(x = -i/s\) (⇒ \(m \ll s\)):


\[\begin{split}\begin{split}
P' & \approx \prod\nolimits_{i=0}^{m-1} e^{-i/s} \\
   & = e^{-m(m-1)/2s}
\end{split}\end{split}\]

(The latter equivalence comes from converting the product of exponents
to a single exponent of a summation of \(-i/s\) terms, factoring out
\(1/s\), and using the series sum equivalence
\(\sum\nolimits_{j=0}^{n} j = n(n+1)/2\) for \(n\ge0\).)




Appriximation #2: Taylor approximation of P’

The above result for \(P'\) is also amenable to Taylor
approximation. Setting \(x = -m(m-1)/2s\), we continue from the
previous derivation:


\[\begin{split}\begin{split}
P' & \approx e^{-(m(m-1)/2s} \\
   & \approx 1 + \frac{-m(m-1)}{2s}
\end{split}\end{split}\]




Approximation #3: Square approximation

For large \(m\), we can approximate \(m(m-1)\) as \(m^2\) to
yield


\[P' \approx 1-m^2/2s\]




Summary of equations

We may now summarize equations to approximate the probability of digest
collisions.


Summary of Equations








	Method

	Probability of uniqueness(\(P'\))

	Probability of collision(\(P=1-P'\))

	Assumptions

	Source/Comparison





	exact

	\(\prod_\nolimits{i=0}^{m-1} \frac{(s-i)}{s}\)

	\(1-P'\)

	\(1 \le m\le s\)

	[1]



	Taylor approximation on #1

	\(e^{-m(m-1)/2s}\)

	\(1-P'\)

	\(m \ll s\)

	[1]



	Taylor approximation on #2

	\(1 - \frac{m(m-1)}{2s}\)

	\(\frac{m(m-1)}{2s}\)

	(same)

	[1]



	Large square approximation

	\(1 - \frac{m^2}{2s}\)

	\(\frac{m^2}{2s}\)

	(same)

	[2] (where \(s=2^n\))







	[1] https://en.wikipedia.org/wiki/Birthday_problem


	[2] http://preshing.com/20110504/hash-collision-probabilities/











Choosing a digest size

Now, we turn the problem around: What digest length \(b\)
corresponds with a collision probability less than \(P\) for
\(m\) messages?

From the above summary, we have \(P = m^2 / 2s\) for
\(m \ll s\). Rewriting with \(s=2^b\), we have the probability
of a collision using \(b\) bits with \(m\) messages (sequences)
is:


\[P(b, m) = m^2 / 2^{b+1}\]

Note that the collision probability depends on the number of messages,
but not their size.

Solving for the number of messages (not used further in this analysis):


\[m(b, P) = \sqrt{P * 2^{b+1}}\]

Solving for the minimum number of bits \(b\) as a function of an
expected number of sequences \(m\) and a desired tolerance for
collisions of \(P\):


\[b(m, P) = \log_2{\left(\frac{m^2}{P}\right)} - 1\]

This equation is derived from equations that assume that
\(m \ll s\), where \(s = 2^b\). When computing \(b(m,P)\),
we’ll require that \(m/s \le 10^{-3}\) as follows:


\[m/s \le 10^{-3}\]

is approximately equivalent to:


\[m/2^b \le 2^{-5}\]


\[m \le 2^{b-5}\]


\[log_2 m \le b-5\]


\[b \ge 5 + log_2 m\]

def b2B3(b):
    """Convert bits b to Bytes, rounded up modulo 3

    We report modulo 3 because the intent will be to use Base64 encoding, which is
    most efficient when inputs have a byte length modulo 3. (Otherwise, the resulting
    string is padded with characters that provide no information.)

    """
    return math.ceil(b/8/3) * 3

def B(P, m):
    """return the number of bits needed to achieve a collision probability
    P for m messages

    Assumes m << 2^b.

    """
    b = math.log2(m / P) - 1
    if b < 5 + math.log2(m):
        return "-"
    return b2B3(b)





m_bins = [1E6, 1E9, 1E12, 1E15, 1E18, 1E21, 1E24, 1E30]
P_bins = [1E-30, 1E-27, 1E-24, 1E-21, 1E-18, 1E-15, 1E-12, 1E-9, 1E-6, 1E-3, 0.5]





table_rows = []
table_rows += [["#m"] + ["P<={P}".format(P=P) for P in P_bins]]
table_rows += [["-"] * len(table_rows[0])]
for n_m in m_bins:
    table_rows += [["{:g}".format(n_m)] + [B(P, n_m) for P in P_bins]]
table = "\n".join(["|".join(map(str,row)) for row in table_rows])
table_header = "### digest length (bytes) required for expected collision probability $P$ over $m$ messages \n"
display(Markdown(table_header +  table))






digest length (bytes) required for expected collision probability \(P\) over \(m\) messages

















	#m

	P<=
1e-
30

	P<=
1e-
27

	P<=
1e-
24

	P<=
1e-
21

	P<=
1e-
18

	P<=
1e-
15

	P<=
1e-
12

	P<=
1e-
09

	P<=
1e-
06

	P<=
0.0
01

	P<=
0.5





	1e+
06

	15

	15

	15

	12

	12

	9

	9

	9

	6

	6

	
	






	1e+
09

	18

	15

	15

	15

	12

	12

	9

	9

	9

	6

	
	






	1e+
12

	18

	18

	15

	15

	15

	12

	12

	9

	9

	9

	
	






	1e+
15

	21

	18

	18

	15

	15

	15

	12

	12

	9

	9

	
	






	1e+
18

	21

	21

	18

	18

	15

	15

	15

	12

	12

	9

	
	






	1e+
21

	24

	21

	21

	18

	18

	15

	15

	15

	12

	12

	
	






	1e+
24

	24

	24

	21

	21

	18

	18

	15

	15

	15

	12

	
	






	1e+
30

	27

	24

	24

	24

	21

	21

	18

	18

	15

	15

	
	

















          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_images/schema-future.png
1+ type: str
1+ st

+ completeness: enum
+ location: Location

+ completeness: enum + head: Location

+ defintion: str
+ state: State

+ haplotypes: Haplotypel] + tal: Location

+ alleles: Allelel] +join_type: Enum

StaticVariationSet

+ members: Variation]]
+ member_ids: Idsl]

RuleBasedVariationSet

+ members: Variationl]
+ member_ids: Idsl]

[ Location cabstracts
-

1+ type: str '
1+ st !

e ) e

+ sequence_id: CURIE
+ interval: Interval

; ;

[rs— westoditorvst | ([ Complesiierea Seencosime | [ owvsme

pu—— P —  soquence-Seauence ocaton: Locaton
Lo e Simptnienval il
ok






_static/GA-logo.png
Z
I
Wils

AV
V. -
A

NS

ZX)
NS
*d

\/

L

.
AL

)
<4
V'
[





_images/id-dig-ser.png
gadgh_identify(o) — id (CURIE)

utr-8 encode(s) — b

?

— T
o) L

e e l—|

|

i






_images/schema-current.png
1+ type: str
1+ st

+ definiton: str

1+ type: str
1+ st

+sequence_id: CURIE
+interval: Interval

+sequence: Sequence






_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          GA4GH Variation Representation Specification
        


        		
          Introduction
        


        		
          Terminology & Information Model
          
            		
              Data Model Notes and Principles
            


            		
              Optional Attributes
            


            		
              Primitive Concepts
              
                		
                  CURIE
                


                		
                  Residue
                


                		
                  Sequence
                


              


            


            		
              Composite Concepts
              
                		
                  Interval (Abstract Class)
                


                		
                  Location (Abstract Class)
                


                		
                  State (Abstract Class)
                


                		
                  Variation
                


              


            


          


        


        		
          Schema
          
            		
              Overview
            


            		
              Machine Readable Specifications
            


          


        


        		
          Implementation Guide
          
            		
              Required External Data
              
                		
                  Contexts
                


                		
                  Data Services
                


                		
                  Suggested Implementation
                


              


            


            		
              Normalization
            


            		
              Computed Identifiers
              
                		
                  Requirements
                


                		
                  Digest Serialization
                


                		
                  Truncated Digest (sha512t24u)
                


                		
                  Identifier Construction
                


                		
                  References
                


              


            


            		
              Example
              
                		
                  Translate HGVS to VR
                


                		
                  Generate a computed identifer
                


                		
                  What’s Next?
                


              


            


          


        


        		
          Appendices
          
            		
              Associating Annotions with VR Objects
            


            		
              Design Decisions
              
                		
                  Variation Rather than Variant
                


                		
                  Allele Rather than Variant
                


                		
                  Alleles are Fully Justified
                


                		
                  Interbase Coordinates
                


                		
                  Modelling Language
                


                		
                  Serialization Strategy
                


              


            


            		
              Development Process
              
                		
                  Versioning
                


                		
                  Release Cycle
                


                		
                  Leadership
                


              


            


            		
              Future Plans
              
                		
                  Overview
                


                		
                  Intervals and Locations
                


                		
                  State Classes
                


                		
                  Variation Classes
                


                		
                  Rule-based Variation
                


                		
                  Variation Sets
                


              


            


            		
              Proposal for GA4GH-wide Computed Identifier Standard
              
                		
                  Background
                


                		
                  Proposal
                


                		
                  Type Prefixes
                


                		
                  Administration
                


              


            


            		
              Implementations
              
                		
                  Libraries
                


                		
                  Applications and Web Services
                


              


            


            		
              Truncated Digest Collision Analysis
              
                		
                  Conclusions
                


                		
                  Digest Timing
                


                		
                  Collision Analysis
                


                		
                  Choosing a digest size
                


              


            


          


        


      


    
  

_static/up.png





_static/up-pressed.png





