
GA4GH Variation Representation
Specification

Release 1.1.2

Jan 02, 2020

Contents

1 Introduction 3

2 Terminology & Information Model 5
2.1 Data Model Notes and Principles . 6
2.2 Optional Attributes . 6
2.3 Primitive Concepts . 6
2.4 Non-variation classes . 8
2.5 Variation . 13

3 Schema 21
3.1 Overview . 21
3.2 Machine Readable Specifications . 22

4 Implementation Guide 23
4.1 Required External Data . 23
4.2 Normalization . 25
4.3 Computed Identifiers . 28
4.4 Example . 31

5 Releases 37
5.1 1.1 . 37
5.2 1.0 . 38

6 Appendices 39
6.1 Relationship of VRS to existing standards . 39
6.2 Associating Annotations with VRS Objects . 40
6.3 Design Decisions . 43
6.4 Development Process . 46
6.5 Future Plans . 48
6.6 Proposal for GA4GH-wide Computed Identifier Standard . 53
6.7 Implementations . 55
6.8 Truncated Digest Timing and Collision Analysis . 57
6.9 Glossary . 63

Bibliography 65

Index 67

i

ii

GA4GH Variation Representation Specification, Release 1.1.2

The Variation Representation Specification (VRS, pronounced “verse”) is a standard developed by the Global Alliance
for Genomic Health to facilitate and improve sharing of genetic information. The Specification consists of a JSON
Schema for representing many classes of genetic variation, conventions to maximize the utility of the schema, and a
Python implementation that promotes adoption of the standard.

Contents 1

GA4GH Variation Representation Specification, Release 1.1.2

2 Contents

CHAPTER 1

Introduction

Maximizing the personal, public, research, and clinical value of genomic information will require that clinicians, re-
searchers, and testing laboratories exchange genetic variation data reliably. The Variation Representation Specification
(VRS, pronounced “verse”) — written by a partnership among national information resource providers, major public
initiatives, and diagnostic testing laboratories — is an open specification to standardize the exchange of variation data.

Here we document the primary contributions of this specification for variation representation:

• Terminology and information model. Definitions for biological terms may be abstract or intentionally am-
biguous, often accurately reflecting scientific uncertainty or understanding at the time. Abstract and ambiguous
terms are not readily translatable into a representation of knowledge. Therefore, the specification begins with
precise computational definitions for biological concepts that are essential to representing sequence variation.
The VRS information model specifies how the computational definitions are to be represented in fields, seman-
tics, objects, and object relationships.

• Machine readable schema. To be useful for information exchange, the information model should be realized
in a schema definition language. The VRS schema is currently implemented using JSON Schema, however it
is intended to support translations to other schema systems (e.g. XML, OpenAPI, and GraphQL). The schema
repository includes language-agnostic tests for ensuring schema compliance in downstream implementations.

• Conventions that promote reliable data sharing. VRS recommends conventions regarding the use of the
schema and that facilitate data sharing. For example, VRS recommends using fully justified allele normalization
using an algorithm inspired by NCBI’s SPDI project.

• Globally unique computed identifiers. This specification also recommends a specific algorithm for construct-
ing distributed and globally-unique identifiers for molecular variation. Importantly, this algorithm enables data
providers and consumers to computationally generate consistent, globally unique identifiers for variation with-
out a central authority.

• A Python implementation. We provide a Python package (vr-python) that demonstrates the above schema and
algorithms, and supports translation of existing variant representation schemes into VRS for use in genomic data
sharing. It may be used as the basis for development in Python, but it is not required in order to use VRS.

The machine readable schema definitions and example code are available online at the VRS repository (https://github.
com/ga4gh/vr-spec).

Readers may wish to view a complete example before reading the specification.

3

https://www.biorxiv.org/content/10.1101/537449v1
https://github.com/ga4gh/vr-python/
https://github.com/ga4gh/vr-spec
https://github.com/ga4gh/vr-spec

GA4GH Variation Representation Specification, Release 1.1.2

For a discussion of VRS with respect to existing standards, such as HGVS, SPDI, and VCF, see Relationship of VRS
to existing standards.

4 Chapter 1. Introduction

CHAPTER 2

Terminology & Information Model

When biologists define terms in order to describe phenomena and observations, they rely on a background of human
experience and intelligence for interpretation. Definitions may be abstract, perhaps correctly reflecting uncertainty of
our understanding at the time. Unfortunately, such terms are not readily translatable into an unambiguous representa-
tion of knowledge.

For example, “allele” might refer to “an alternative form of a gene or locus” [Wikipedia], “one of two or more forms of
the DNA sequence of a particular gene” [ISOGG], or “one of a set of coexisting sequence alleles of a gene” [Sequence
Ontology]. Even for human interpretation, these definitions are inconsistent: does the definition precisely describe
a specific change on a specific sequence, or, rather, a more general change on an undefined sequence? In addition,
all three definitions are inconsistent with the practical need for a way to describe sequence changes outside regions
associated with genes.

The computational representation of biological concepts requires translating precise biological definitions into
data structures that can be used by implementers. This translation should result in a representation of information
that is consistent with conventional biological understanding and, ideally, be able to accommodate future data as well.
The resulting computational representation of information should also be cognizant of computational performance,
the minimization of opportunities for misunderstanding, and ease of manipulating and transforming data.

Accordingly, for each term we define below, we begin by describing the term as used by biologists (biological defini-
tion) as available. When a term has multiple biological definitions, we explicitly choose one of them for the purposes
of this specification. We then provide a computer modelling definition (computational definition) that reformulates
the biological definition in terms of information content. We then translate each of these computational definitions
into precise specifications for the (logical model). Terms are ordered “bottom-up” so that definitions depend only on
previously-defined terms.

Note: The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC
2119.

5

https://en.wikipedia.org/wiki/Allele
https://isogg.org/wiki/Allele
http://www.sequenceontology.org/browser/current_svn/term/SO:0001023
http://www.sequenceontology.org/browser/current_svn/term/SO:0001023
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

GA4GH Variation Representation Specification, Release 1.1.2

2.1 Data Model Notes and Principles

• VRS uses snake_case to represent compound words. Although the schema is currently JSON-based (which
would typically use camelCase), VRS itself is intended to be neutral with respect to languages and database.

• VRS objects are value objects. Two objects are considered equal if and only if their respective attributes are
equal. As value objects, VRS objects are used as primitive types and SHOULD NOT be used as containers for
related data. Instead, related data should be associated with VRS objects through identifiers. See Computed
Identifiers.

• Error handling is intentionally unspecified and delegated to implementation. VRS provides foundational data
types that enable significant flexibility. Except where required by this specification, implementations may
choose whether and how to validate data. For example, implementations MAY choose to validate that particular
combinations of objects are compatible, but such validation is not required.

• We recognize that a common desire may be to have human-readable identifiers associated with VRS objects.
We recommend using the _id field (see Optional Attributes below) to create a lookup for any such identifiers
(see example usage), and provide reference methods for creating VRS identifiers from other common variant
formats (see the HGVS translation example).

2.2 Optional Attributes

• VRS attributes use a leading underscore to represent optional attributes that are not part of the value object.
Such attributes are not considered when evaluating equality or creating computed identifiers. Currently, the only
such attribute in the specification is the _id attribute.

• The _id attribute is available to identifiable objects, and MAY be used by an implementation to store the identifier
for a VRS object. If used, the stored _id element MUST be a CURIE. If used for creating a Truncated Digest
(sha512t24u) for parent objects, the stored element must be a GA4GH Computed Identifier.

2.3 Primitive Concepts

2.3.1 CURIE

Biological Definition

None.

Computational Definition

A CURIE formatted string. A CURIE string has the structure prefix:reference (W3C Terminology).

Implementation Guidance

• All identifiers in VRS MUST be a valid Compact URI (CURIE), regardless of whether the identifier refers to
GA4GH VRS objects or external data.

• For GA4GH VRS objects, this specification RECOMMENDS using globally unique Computed Identifiers for
use within and between systems.

• For external data, CURIE-formatted identifiers MUST be used. When an appropriate namespace exists at iden-
tifiers.org, that namespace MUST be used. When an appropriate namespace does not exist at identifiers.org,
support is implementation-dependent. That is, implementations MAY choose whether and how to support in-
formal or local namespaces.

6 Chapter 2. Terminology & Information Model

https://simple.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Value_object
https://www.w3.org/TR/curie/
https://www.w3.org/TR/curie/
http://identifiers.org/
http://identifiers.org/
http://identifiers.org/

GA4GH Variation Representation Specification, Release 1.1.2

• Implementations MUST use CURIE identifiers verbatim. Implementations MAY NOT modify CURIEs in any
way (e.g., case-folding).

Examples

Identifiers for GRCh38 chromosome 19:

ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl
refseq:NC_000019.10
grch38:19

See Identifier Construction for examples of CURIE-based identifiers for VRS objects.

2.3.2 Residue

Biological Definition

A residue refers to a specific monomer within the polymeric chain of a protein or nucleic acid (Source: Wikipedia
Residue page).

Computational Definition

A character representing a specific residue (i.e., molecular species) or groupings of these (“ambiguity codes”), using
one-letter IUPAC abbreviations for nucleic acids and amino acids.

2.3.3 Sequence

Biological Definition

A contiguous, linear polymer of nucleic acid or amino acid residues.

Computational Definition

A character string of Residues that represents a biological sequence using the conventional sequence order (5’-to-3’
for nucleic acid sequences, and amino-to-carboxyl for amino acid sequences). IUPAC ambiguity codes are permitted
in Sequences.

Information Model

A Sequence is a string, constrained to contain only characters representing IUPAC nucleic acid or amino acid codes.

Implementation Guidance

• Sequences MAY be empty (zero-length) strings. Empty sequences are used as the replacement Sequence for
deletion Alleles.

• Sequences MUST consist of only uppercase IUPAC abbreviations, including ambiguity codes.

• A Sequence provides a stable coordinate system by which an Allele MAY be located and interpreted.

• A Sequence MAY have several roles. A “reference sequence” is any Sequence used to define an Allele. A
Sequence that replaces another Sequence is called a “replacement sequence”.

• In some contexts outside VRS, “reference sequence” may refer to a member of set of sequences that comprise a
genome assembly. In the VRS specification, any sequence may be a “reference sequence”, including those in a
genome assembly.

• For the purposes of representing sequence variation, it is not necessary that Sequences be explicitly “typed”
(i.e., DNA, RNA, or AA).

2.3. Primitive Concepts 7

https://en.wikipedia.org/wiki/Monomer
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/Residue_%28chemistry%29
https://en.wikipedia.org/wiki/Residue_%28chemistry%29
https://www.genome.jp/kegg/catalog/codes1.html

GA4GH Variation Representation Specification, Release 1.1.2

2.4 Non-variation classes

2.4.1 SequenceInterval (Abstract Class)

Biological Definition

None.

Computational Definition

The SequenceInterval abstract class defines a range on a Sequence, possibly with length zero, and specified using
Interbase Coordinates. An Interval MAY be a SimpleInterval with a single start and end coordinate. Future Location
and SequenceInterval types will enable other methods for describing where Variation occurs. Any of these MAY be
used as the SequenceInterval for Location.

VRS Uses Interbase Coordinates

GA4GH VRS uses interbase coordinates when referring to spans of sequence.

Interbase coordinates refer to the zero-width points before and after residues. An interval of interbase coordinates
permits referring to any span, including an empty span, before, within, or after a sequence. See Interbase Coordi-
nates for more details on this design choice. Interbase coordinates are always zero-based.

SimpleInterval

Computational Definition

A SequenceInterval (Abstract Class) with a single start and end coordinate.

Information Model

Field Type Limits Description
type string 1..1 MUST be “SimpleInterval”
start uint64 1..1 start position
end uint64 1..1 end position

Implementation Guidance

• Implementations MUST enforce values 0 start end. In the case of double-stranded DNA, this constraint holds
even when a feature is on the complementary strand.

• VRS uses Interbase coordinates because they provide conceptual consistency that is not possible with residue-
based systems (see rationale). Implementations will need to convert between interbase and 1-based inclusive
residue coordinates familiar to most human users.

• Interbase coordinates start at 0 (zero).

• The length of an interval is end - start.

• An interval in which start == end is a zero width point between two residues.

• An interval of length == 1 MAY be colloquially referred to as a position.

• Two intervals are equal if the their start and end coordinates are equal.

• Two intervals intersect if the start or end coordinate of one is strictly between the start and end coordinates of
the other. That is, if:

8 Chapter 2. Terminology & Information Model

GA4GH Variation Representation Specification, Release 1.1.2

– b.start < a.start < b.end OR

– b.start < a.end < b.end OR

– a.start < b.start < a.end OR

– a.start < b.end < a.end

• Two intervals a and b coincide if they intersect or if they are equal (the equality condition is REQUIRED to
handle the case of two identical zero-width SimpleIntervals).

• <start, end>=<0,0> refers to the point with width zero before the first residue.

• <start, end>=<i,i+1> refers to the i+1th (1-based) residue.

• <start, end>=<N,N> refers to the position after the last residue for Sequence of length N.

• See example notebooks in GA4GH VR Python Implementation.

Examples

{
"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

}

2.4.2 CytobandInterval

Computational Definition

A contiguous region specified by chromosomal bands features.

Information Model

Field Type Limits Description
type string 1..1 MUST be “CytobandInterval”
start string 1..1 name of feature start
end string 1..1 name of feature end

Implementation Guidance

• start and end attributes of CytobandInterval are intentionally specified vaguely in order to accommodate a wide
variety of uses. Examples include named markers on chromosomes, cytogenetic bands, and legacy marker
names found in older scientific literature.

• When CytobandInterval refers to cytogentic bands, the valid values for, and the syntactic structure of, the
start and end depend on the species. When using CytobandInterval to refer to human cytogentic bands, ISCN
conventions MUST be used. Bands are denoted by the arm (“p” or “q”) and position (e.g., “22”, “22.3”, or the
symbolic values “cen” or “ter”). If start and end are on different arms, they SHOULD correspond to the p-arm
and q-arm locations respectively. If start and end are on the same arm, start MUST be the more centromeric
position (i.e., with lower band and sub-band numbers).

Examples

{
"end": "q22.3",
"start": "q22.2",
"type": "CytobandInterval"

}

2.4. Non-variation classes 9

https://github.com/ga4gh/vr-python/

GA4GH Variation Representation Specification, Release 1.1.2

2.4.3 Location (Abstract Class)

Biological Definition

As used by biologists, the precision of “location” (or “locus”) varies widely, ranging from precise start and end numer-
ical coordinates defining a Location, to bounded regions of a sequence, to conceptual references to named genomic
features (e.g., chromosomal bands, genes, exons) as proxies for the Locations on an implied reference sequence.

Computational Definition

The Location abstract class refers to position of a contiguous segment of a biological sequence. The most common and
concrete Location is a SequenceLocation, i.e., a Location based on a named sequence and an Interval on that sequence.
Additional Intervals and Locations may also be conceptual or symbolic locations, such as a cytoband region or a gene.
Any of these may be used as the Location for Variation.

Implementation Guidance

• Location refers to a position. Although it MAY imply a sequence, the two concepts are not interchangeable,
especially when the location is non-specific (e.g., a range) or symbolic (a gene).

ChromosomeLocation

Biological Definition

Chromosomal locations based on named features.

Computational Definition

A ChromosomeLocation is a Location (Abstract Class) that is defined by a named chromosomal features.

Information Model

Field Type Lim-
its

Description

_id CURIE 0..1 Location id; MUST be unique within document
type string 1..1 MUST be “ChromosomeLocation”
species CURIE 1..1 An external reference to a species taxonomy. Default: “taxonomy:9606” (Human).

See Implementation Guidance, below.
chr string 1..1 The symbolic chromosome name
in-
ter-
val

Cytoband-
Interval

1..1 The chromosome region based on feature names

Implementation Guidance

• ChromosomeLocation is intended to enable the representation of cytogenetic results from karyotyping or low-
resolution molecular methods, particularly those found in older scientific literature. Precise SequenceLocation
should be preferred when nucleotide-scale location is known.

• species is specified using the NCBI taxonomy. The CURIE prefix MUST be “taxonomy”, corresponding to
the NCBI taxonomy prefix at identifiers.org, and the CURIE reference MUST be an NCBI taxonomy identifier
(e.g., 9606 for Homo sapiens).

• ChromosomeLocation is intended primarily for Humans. Support for other species is possible and will be
considered based on community feedback.

• chromosome is an archetypal chromosome name. Valid values for, and the syntactic structure of, chromosome
depends on the species. chromosome MUST be an official sequence name from NCBI Assembly. For Humans,
valid chromosome names are 1..22, X, Y (case-sensitive).

10 Chapter 2. Terminology & Information Model

https://registry.identifiers.org/registry/taxonomy
https://www.ncbi.nlm.nih.gov/assembly

GA4GH Variation Representation Specification, Release 1.1.2

• interval refers to a contiguous region specified named markers, which are presumed to exist on the specified
chromosome. See CytobandInterval for additional information.

• The conversion of ChromosomeLocation instances to SequenceLocation instances is out-of-scope for VRS.
When converting start and end to SequenceLocations, the positions MUST be interpreted as inclusive ranges
that cover the maximal extent of the region.

• Data for converting cytogenetic bands to precise sequence coordinates are available at NCBI GDP, UCSC
GRCh37 (hg19), UCSC GRCh38 (hg38), and bioutils (Python).

• See also the rationale for Not using External Chromosome Declarations.

Examples

{
"chr": "11",
"interval": {
"end": "q22.3",
"start": "q22.2",
"type": "CytobandInterval"
},

"species_id": "taxonomy:9606",
"type": "ChromosomeLocation"

}

SequenceLocation

Biological Definition

A specified subsequence within another sequence that is used as a reference sequence.

Computational Definition

A Location subclass for describing a defined SequenceInterval (Abstract Class) on a named Sequence.

Information Model

Field Type Lim-
its

Description

_id CURIE 0..1 Location id; MUST be unique within document
type string 1..1 MUST be “SequenceLocation”
se-
quence_id

CURIE 1..1 An id mapping to the Computed Identifiers of the external database Se-
quence containing the sequence to be located.

interval SequenceInterval
(Abstract Class)

1..1 Position of feature on reference sequence specified by sequence_id.

Implementation Guidance

• For a Sequence of length n:

– 0 interval.start interval.end n

– interbase coordinate 0 refers to the point before the start of the Sequence

– interbase coordinate n refers to the point after the end of the Sequence.

• Coordinates MUST refer to a valid Sequence. VRS does not support referring to intronic positions within a
transcript sequence, extrapolations beyond the ends of sequences, or other implied sequence.

2.4. Non-variation classes 11

https://ftp.ncbi.nlm.nih.gov/pub/gdp/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz
https://bioutils.readthedocs.io/en/stable/reference/bioutils.cytobands.html

GA4GH Variation Representation Specification, Release 1.1.2

Important: HGVS permits variants that refer to non-existent sequence. Examples include coordinates extrapolated
beyond the bounds of a transcript and intronic sequence. Such variants are not representable using VRS and MUST
be projected to a genomic reference in order to be represented.

Examples

{
"interval": {
"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

}

2.4.4 State (Abstract Class)

Biological Definition

None.

Computational Definition

State objects are one of two primary components specifying a VRS Allele (in addition to Location (Abstract Class)),
and the designated components for representing change (or non-change) of the features indicated by the Allele Loca-
tion. As an abstract class, State currently encompasses single and contiguous Sequence changes (see SequenceState),
with additional types under consideration (see State Classes).

SequenceState

Biological Definition

None.

Computational Definition

The SequenceState class specifically captures a Sequence as a State (Abstract Class). This is the State class to use for
representing “ref-alt” style variation, including SNVs, MNVs, del, ins, and delins.

Information Model

Field Type Limits Description
type string 1..1 MUST be “SequenceState”
sequence string 1..1 The string of sequence residues that is to be used as the state for other types.

Examples

{
"sequence": "T",
"type": "SequenceState"

}

12 Chapter 2. Terminology & Information Model

GA4GH Variation Representation Specification, Release 1.1.2

2.5 Variation

The Variation class is the conceptual root of all types of variation, both current and future.

Biological Definition

In biology, variation is often used to mean sequence variation, describing the differences observed in DNA or AA
bases among individuals.

Computational Definition

The Variation abstract class is the top-level object in the Current Variation Representation Specfication Schema and
represents the concept of a molecular state. The representation and types of molecular states are widely varied, and
there are several Variation Classes currently under consideration to capture this diversity. The primary Variation
subclass defined by the VRS 1.1 specification is the Allele, with the Text subclass for capturing other Variations that
are not yet covered.

2.5.1 Allele

Biological Definition

One of a number of alternative forms of the same gene or same genetic locus. In the context of biological sequences,
“allele” refers to one of a set of specific changes within a Sequence. In the context of VRS, Allele refers to a Sequence
or Sequence change with respect to a reference sequence, without regard to genes or other features.

Computational Definition

An Allele is an assertion of the State of a biological sequence at a Location.

Information Model

Field Type Limits Description
_id CURIE 0..1 Variation Id; MUST be unique within document
type string 1..1 MUST be “Allele”
location Location (Abstract Class) | CURIE 1..1 Where Allele is located
state State (Abstract Class) 1..1 State at location

Implementation Guidance

• The State and Location subclasses respectively represent diverse kinds of sequence changes and mechanisms
for describing the locations of those changes, including varying levels of precision of sequence location and
categories of sequence changes.

• Implementations MUST enforce values interval.end sequence_length when the Sequence length is known.

• Alleles are equal only if the component fields are equal: at the same location and with the same state.

• Alleles MAY have multiple related representations on the same Sequence type due to normalization differences.

• Implementations SHOULD normalize Alleles using “justified” normalization whenever possible to facilitate
comparisons of variation in regions of representational ambiguity.

• Implementations MUST normalize Alleles using “justified” normalization when generating a Computed Iden-
tifiers.

• When the alternate Sequence is the same length as the interval, the lengths of the reference Sequence and
imputed Sequence are the same. (Here, imputed sequence means the sequence derived by applying the Allele
to the reference sequence.) When the replacement Sequence is shorter than the length of the interval, the

2.5. Variation 13

GA4GH Variation Representation Specification, Release 1.1.2

imputed Sequence is shorter than the reference Sequence, and conversely for replacements that are larger than
the interval.

• When the replacement is “” (the empty string), the Allele refers to a deletion at this location.

• The Allele entity is based on Sequence and is intended to be used for intragenic and extragenic variation. Alleles
are not explicitly associated with genes or other features.

• Biologically, referring to Alleles is typically meaningful only in the context of empirical alternatives. For
modelling purposes, Alleles MAY exist as a result of biological observation or computational simulation, i.e.,
virtual Alleles.

• “Single, contiguous” refers the representation of the Allele, not the biological mechanism by which it was
created. For instance, two non-adjacent single residue Alleles could be represented by a single contiguous
multi-residue Allele.

• The terms “allele” and “variant” are often used interchangeably, although this use may mask subtle distinctions
made by some users.

– In the genetics community, “allele” may also refer to a haplotype.

– “Allele” connotes a state whereas “variant” connotes a change between states. This distinction makes it
awkward to use variant to refer to the concept of an unchanged position in a Sequence and was one of the
factors that influenced the preference of “Allele” over “Variant” as the primary subject of annotations.

– See Use “Allele” rather than “Variant” for further details.

• When a trait has a known genetic basis, it is typically represented computationally as an association with an
Allele.

• This specification’s definition of Allele applies to all Sequence types (DNA, RNA, AA).

Examples

{
"location": {

"interval": {
"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "T",
"type": "SequenceState"

},
"type": "Allele"

}

2.5.2 Text

Biological Definition

None

Computational Definition

The Text subclass of Variation is intended to capture textual descriptions of variation that cannot be parsed by other
Variation subclasses, but are still treated as variation.

14 Chapter 2. Terminology & Information Model

GA4GH Variation Representation Specification, Release 1.1.2

Information Model

Field Type Lim-
its

Description

_id CURIE 0..1 Variation Id; MUST be unique within document
type string 1..1 MUST be “Text”
definition string 1..1 The textual variation representation not parsable by other subclasses of Variation.

Implementation Guidance

• An implementation MUST represent Variation with subclasses other than Text if possible.

• An implementation SHOULD define or adopt conventions for defining the strings stored in Text.definition.

• If a future version of VRS is adopted by an implementation and the new version enables defining existing Text
objects under a different Variation subclass, the implementation MUST construct a new object under the other
Variation subclass. In such a case, an implementation SHOULD persist the original Text object and respond to
queries matching the Text object with the new object.

• Additional Variation subclasses are continually under consideration. Please open a GitHub issue if you would
like to propose a Variation subclass to cover a needed variation representation.

Examples

{
"definition": "APOE loss",
"type": "Text"

}

2.5.3 Haplotype

Biological Definition

A specific combination of Alleles that occur together on single sequence in one or more individuals.

Computational Definition

A specific combination of non-overlapping Alleles that co-occur on the same reference sequence.

Information Model

Field Type Limits Description
_id CURIE 0..1 Variation Id; MUST be unique within document
type string 1..1 MUST be “Haplotype”
members Allele[] | CURIE[] 1..* List of Alleles, or references to Alleles, that comprise this Haplotype

Implementation Guidance

• Haplotypes are an assertion of Alleles known to occur “in cis” or “in phase” with each other.

• All Alleles in a Haplotype MUST be defined on the same reference sequence.

• Alleles within a Haplotype MUST not overlap (“overlap” is defined in Interval).

• The locations of Alleles within the Haplotype MUST be interpreted independently. Alleles that create a net
insertion or deletion of sequence MUST NOT change the location of “downstream” Alleles.

• The members attribute is required and MUST contain at least one Allele.

2.5. Variation 15

https://github.com/ga4gh/vr-spec/issues

GA4GH Variation Representation Specification, Release 1.1.2

Sources

• ISOGG: Haplotype — A haplotype is a combination of alleles (DNA sequences) at different places (loci) on the
chromosome that are transmitted together. A haplotype may be one locus, several loci, or an entire chromosome
depending on the number of recombination events that have occurred between a given set of loci.

• SO: haplotype (SO:0001024) — A haplotype is one of a set of coexisting sequence variants of a haplotype
block.

• GENO: Haplotype (GENO:0000871) - A set of two or more sequence alterations on the same chromosomal
strand that tend to be transmitted together.

Examples

An APOE-𝜖1 Haplotype with inline Alleles:

{
"members": [
{

"location": {
"interval": {
"end": 44908684,
"start": 44908683,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

},
{

"location": {
"interval": {
"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "T",
"type": "SequenceState"

},
"type": "Allele"

}
],
"type": "Haplotype"

}

The same APOE-𝜖1 Haplotype with referenced Alleles:

{
"members": [
"ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H",

(continues on next page)

16 Chapter 2. Terminology & Information Model

https://isogg.org/wiki/Haplotype
http://www.sequenceontology.org/browser/current_release/term/SO:0001024
http://www.ontobee.org/ontology/GENO?iri=http://purl.obolibrary.org/obo/GENO_0000871

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

"ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_"
],
"type": "Haplotype"

}

The GA4GH computed identifier for these Haplotypes is ga4gh:VH.NAVnEuaP9gf41OxnPM56XxWQfdFNcUxJ, re-
gardless of the whether the Variation objects are inlined or referenced, and regardless of order. See Computed Identi-
fiers for more information.

2.5.4 VariationSet

Biological Definition

Sets of variation are used widely, such as sets of variants in dbSNP or ClinVar that might be related by function.

Computational Definition

An unconstrained set of Variation objects or references.

Information Model

Field Type Lim-
its

Description

_id CURIE 0..1 Identifier of the VariationSet.
type string 1..1 MUST be “VariationSet”
mem-
bers

Variation[] or
CURIE[]

0..* List of Variation objects or identifiers. Attribute is required, but MAY
be empty.

Implementation Guidance

• The VariationSet identifier MAY be computed as described in Computed Identifiers, in which case the identifier
effectively refers to a static set because a different set of members would generate a different identifier.

• members may be specified as Variation objects or CURIE identifiers.

• CURIEs MAY refer to entities outside the ga4gh namespace. However, objects that use non-ga4gh identifiers
MAY NOT use the Computed Identifiers mechanism.

• VariationSet identifiers computed using the GA4GH Computed Identifiers process do not depend on whether
the Variation objects are inlined or referenced, and do not depend on the order of members.

• Elements of members must be subclasses of Variation, which permits sets to be nested.

• Recursive sets are not meaningful and are not supported.

• VariationSets may be empty.

Examples

Inlined Variation objects:

{
"members": [
{

"location": {
"interval": {
"end": 11,
"start": 10,

(continues on next page)

2.5. Variation 17

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

"type": "SimpleInterval"
},
"sequence_id": "ga4gh:SQ.01234abcde",
"type": "SequenceLocation"

},
"state": {

"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

},
{

"location": {
"interval": {
"end": 21,
"start": 20,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.01234abcde",
"type": "SequenceLocation"

},
"state": {

"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

},
{

"location": {
"interval": {
"end": 31,
"start": 30,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.01234abcde",
"type": "SequenceLocation"

},
"state": {

"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

}
],
"type": "VariationSet"

}

Referenced Variation objects:

{
"members": [
"ga4gh:VA.6xjH0Ikz88s7MhcyN5GJTa1p712-M10W",
"ga4gh:VA.7k2lyIsIsoBgRFPlfnIOeCeEgj_2BO7F",
"ga4gh:VA.ikcK330gH3bYO2sw9QcTsoptTFnk_Xjh"

],
"type": "VariationSet"

}

18 Chapter 2. Terminology & Information Model

GA4GH Variation Representation Specification, Release 1.1.2

The GA4GH computed identifier for these sets is ga4gh:VS.WVC_R7OJ688EQX3NrgpJfsf_ctQUsVP3, regardless of
the whether the Variation objects are inlined or referenced, and regardless of order. See Computed Identifiers for more
information.

2.5. Variation 19

GA4GH Variation Representation Specification, Release 1.1.2

20 Chapter 2. Terminology & Information Model

CHAPTER 3

Schema

3.1 Overview

Fig. 1: Current Variation Representation Specfication Schema
Legend Classes (data types) are shown as boxes. Abstract classes are denoted by dotted outline; “identifiable” classes, which may

be referenced with an identifier, are denoted by bold borders; non-identifiable classes are denoted by thin solid borders.
Inheritance and composition are shown with dotted gray and solid black lines connecting classes, respectively. All classes have a

string type. Abstract classes enable specializations of concepts in this and future versions of VRS. Identifiable classes have an
optional _id attribute. Non-identifiable classes exist only to structure data always occur “inline” within objects. Inherited attributes

are not shown in this diagram. An asterisk (*) denotes a nullable attribute. A dagger (†) denotes attributes that may be specified
with inline objects or references to the same type.

[source]

21

https://app.diagrams.net/#G1Qimkvi-Fnd1hhuixbd6aU4Se6zr5Nc1h

GA4GH Variation Representation Specification, Release 1.1.2

3.2 Machine Readable Specifications

The machine readable VRS Specification is written using JSON Schema.

The schema itself is written in YAML (vr.yaml) and converted to JSON (vr.json).

Contributions to the schema MUST be written in the YAML document.

22 Chapter 3. Schema

https://json-schema.org/

CHAPTER 4

Implementation Guide

This section describes the data and algorithmic components that are REQUIRED for implementations of VRS.

• Required External Data: All implementations will require access to sequences and sequence accessions. The
Required External Data section provides guidance on the abstract functionality that is required in order to im-
plement VR.

• Normalization: Expands Alleles to the maximal region of representational ambiguity.

• Computed Identifiers: Generate globally unique identifiers based solely on the variation definition.

4.1 Required External Data

All VRS implementations will require external data regarding sequences and sequence metadata. The choices of data
sources and access methods are left to implementations. This section provides guidance about how to implement
required data and helps implementers estimate effort. This section is descriptive only: it is not intended to impose
requirements on interface to, or sources of, external data. For clarity and completeness, this section also describes the
contexts in which external data are used.

4.1.1 Contexts

• Conversion from other variant formats When converting from other variation formats, implementations
MUST translate primary database accessions or identifiers (e.g., NM_000551.3 or refseq:NM_000551.3)
to a GA4GH VRS sequence identifier (ga4gh:SQ.v_QTc1p-MUYdgrRv4LMT6ByXIOsdw3C_)

• Conversion to other variant formats When converting to other variation formats, implementations SHOULD
translate GA4GH VR sequence identifier (ga4gh:SQ.v_QTc1p-MUYdgrRv4LMT6ByXIOsdw3C_) to pri-
mary database identifiers (refseq:NM_000551.3) that will be more readily recognized by users.

• Normalization During Normalization, implementations will need access to sequence length and sequence con-
texts.

23

GA4GH Variation Representation Specification, Release 1.1.2

4.1.2 Data Services

The following tables summarizes data required in the above contexts:

Table 1: Data Service Desciptions
Data Ser-
vice

Description Contexts

sequence For a given sequence identifier and range, return the corresponding subse-
quence.

normalization

sequence
length

For a given sequence identifier, return the length of the sequence normalization

identifier
translation

For a given sequence identifier and target namespace, return all identifiers in
the target namespace that are equivelent to the given identifier.

Conversion
to/from other
formats

Note: Construction of the GA4GH computed identifier for a sequence is described in Computed Identifiers.

4.1.3 Suggested Implementation

In order to maximize portability and to insulate implementations from decisions about external data sources, imple-
menters should consider writing an abstract data proxy interface that to define a service, and then implement this
interface for each data backend to be supported. The vr-python: GA4GH VRS Python Implementation DataProxy class
provides an example of this design pattern and sample replies.

The DataProxy interface defines three methods:

• get_sequence(identifier, start, end): Given a sequence identifier and start and end coordi-
nates, return the corresponding sequence segment.

• get_metadata(identifier): Given a sequence identifier, return a dictionary of length, alphabet, and
known aliases.

• translate_sequence_identifier(identifier, namespace): Given a sequence identifier, re-
turn all aliases in the specified namespace. Zero or more aliases may be returned.

GA4GH VR Python Implementation implements the DataProxy interface using a local SeqRepo instance backend and
using a SeqRepo REST Service backend. A GA4GH refget implementation has been started, but is pending interface
changes to support lookup using primary database accesssions.

Examples

The following examples are taken from VR Python Notebooks:

from ga4gh.vr.dataproxy import SeqRepoRESTDataProxy
seqrepo_rest_service_url = "http://localhost:5000/seqrepo"
dp = SeqRepoRESTDataProxy(base_url=seqrepo_rest_service_url)

def get_sequence(identifier, start=None, end=None):
"""returns sequence for given identifier, optionally limited
to interbase <start, end> interval"""
return dp.get_sequence(identifier, start, end)

def get_sequence_length(identifier):

(continues on next page)

24 Chapter 4. Implementation Guide

https://github.com/ga4gh/vr-python/blob/master/src/ga4gh.vr.dataproxy.py
https://github.com/ga4gh/vr-python/
https://github.com/biocommons/biocommons.seqrepo/
https://github.com/biocommons/seqrepo-rest-service/
https://github.com/ga4gh/vr-python/tree/master/notebooks

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

"""return length of given sequence identifier"""
return dp.get_metadata(identifier)["length"]

def translate_sequence_identifier(identifier, namespace):
"""return for given identifier, return *list* of equivalent identifiers in given

→˓namespace"""
return dp.translate_sequence_identifier(identifier, namespace)

get_sequence_length("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl")
58617616

start, end = 44908821-25, 44908822+25
get_sequence("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl", start, end)
'CCGCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTACCAGGCCGGGGC'

translate_sequence_identifier("GRCh38:19", "ga4gh")
['ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl']

translate_sequence_identifier("ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl", "GRCh38")
['GRCh38:19', 'GRCh38:chr19']

4.2 Normalization

In VRS, “normalization” refers to the process of rewriting an ambiguous variation representation of variation into a
canonical form. Normalization eliminates a class of ambiguity that impedes comparison of variation across systems.

In the sequencing community, “normalization” refers to the process of converting a given sequence variant into a
canonical form, typically by left- or right-shuffling insertion/deletion variants. VRS normalization extends this concept
to all classes of VRS Variation objects.

Implementations MUST provide a normalize function that accepts any Variation object and returns a normalized
Variation. Guidelines for these functions are below.

4.2.1 General Normalization Rules

• Object types that do not have explicit VRS normalization rules below are returned as-is. That is, all types of
Variation MUST be supported, even if such objects are unchanged.

• VRS normalization functions are idempotent: Normalizing a previously-normalized object returns an equivalent
object.

• VRS normalization functions are not necessarily homomorphic: That is, the input and output objects may be of
different types.

4.2.2 Allele Normalization

Certain insertion or deletion alleles may have ambiguous representations when using conventional sequence normal-
ization, resulting in significant challenges when comparing such alleles.

4.2. Normalization 25

GA4GH Variation Representation Specification, Release 1.1.2

VRS uses a “fully-justified” normalization algorithm inspired by NCBI’s Variant Overprecision Correction Algo-
rithm1. Fully-justified normalization expands such ambiguous representation over the entire region of ambiguity,
resulting in an unambiguous representation that may be readily compared with other alleles.

VRS RECOMMENDS that Alleles at precise locations are normalized to a fully justified form unless there is a com-
pelling reason to do otherwise. Alleles SHOULD be normalized in order to generate Computed Identifiers.

The process for fully justifying an Allele is outlined below.

0. Given an Allele:

a. Let reference allele sequence refer to the subsequence at the Allele’s SequenceLocation.

b. Let alternate allele sequence be the sequence in the Allele’s State object.

c. Let start and end initially be the start and end of the Allele’s SequenceLocation.

1. Trim sequences:

a. Remove suffixes common to the reference allele sequence and alternate allele sequence, if any. Decrement
end by the length of the trimmed suffix.

b. Remove prefixes common to the reference allele sequence and alternate allele sequence, if any. Increment
start by the length of the trimmed prefix.

2. If reference allele sequence and alternate allele sequence are empty, the input Allele is a reference Allele.
Return the input Allele unmodified.

3. If reference allele sequence and alternate allele sequence are non-empty, the input Allele has been reduced to a
substitution Allele. Construct and return a new Allele with the current start, end, and alternate allele sequence.

NOTE: The remaining cases are that exactly one of reference allele sequence or alternate allele sequence is
empty. If reference allele sequence is empty, the Allele represents an insertion in the reference. If alternate
allele sequence is empty, the Allele represents a deletion in the reference.

4. Determine bounds of ambiguity:

a. Left roll: While the terminal base of all non-empty alleles is equal to the base prior to the current position,
circularly permute all alleles rightward and move the current position leftward. When terminating, return
left_roll, the number of steps rolled leftward.

b. Right roll: Symmetric case of left roll, returning right_roll, the number of steps rolled rightward.

5. Fully justify the trimmed allele sequences:

a. To the reference allele sequence and alternate allele sequence, prepend the left_roll bases prior to the
trimmed allele position and append the right_roll bases after the trimmed allele position.

b. Decrement start by left_roll and increment end by right_roll.

6. Construct and return a new Allele with the current start, end, and alternate allele sequence.

1 Holmes, J. B., Moyer, E., Phan, L., Maglott, D. & Kattman, B. L. SPDI: Data Model for Variants and Applications at NCBI. Bioinformatics
(2020 March 15). doi:10.1093/bioinformatics/btz856

26 Chapter 4. Implementation Guide

https://doi.org/10.1093/bioinformatics/btz856

GA4GH Variation Representation Specification, Release 1.1.2

Table 2: VRS Justified Normalization A demonstration of fully justify-
ing an insertion allele.

Steps start and end
(interbase)
and allele
sequences

Equivalent
representations

0. Given allele S:g.5_6delinsCAGCA defined on
reference sequence S=TCAGCAGCT (4,6)

(“CA”, “CAGCA”)
𝑇𝐶𝐴𝐺

[︁ 𝐶𝐴

𝐶𝐴𝐺𝐶𝐴

]︁
𝐺𝐶𝑇

1. Trimming
a. Remove suffix common to all alleles, if any, and

update end position.
b. Remove prefix common to all alleles, if any, and

update start position.
Note: This example shows removing C prefix and A
suffix. Equivalently in this case, CA prefix or CA
suffix could be removed.

(5,5)
(“”, “AGC”)

𝑇𝐶𝐴𝐺𝐶
[︁
𝐴𝐺𝐶

]︁
𝐴𝐺𝐶𝑇

2. & 3. These conditions are False.

4a. Roll Left
Begin with trimmed alleles from (1).
While the terminal base of all non-empty alle-
les equals the base prior to the current position,
circularly permute all alleles right one step and
move the start left one position.
Shown: The 4 incremental steps of rolling left.

(1,1)
(“”, “CAG”)

𝑇𝐶𝐴𝐺𝐶
[︁
𝐴𝐺𝐶

]︁
𝐴𝐺𝐶𝑇

𝑇𝐶𝐴𝐺
[︁
𝐶𝐴𝐺

]︁
𝐶𝐴𝐺𝐶𝑇

𝑇𝐶𝐴
[︁
𝐺𝐶𝐴

]︁
𝐺𝐶𝐴𝐺𝐶𝑇

𝑇𝐶
[︁
𝐴𝐺𝐶

]︁
𝐴𝐺𝐶𝐴𝐺𝐶𝑇

𝑇
[︁
𝐶𝐴𝐺

]︁
𝐶𝐴𝐺𝐶𝐴𝐺𝐶𝑇

⇒ 𝑙𝑒𝑓𝑡_𝑟𝑜𝑙𝑙 = 4

4b. Roll Right
Symmetric case of step 4a.

(8,8)
(“”, “AGC”)

𝑇𝐶𝐴𝐺𝐶
[︁
𝐴𝐺𝐶

]︁
𝐴𝐺𝐶𝑇

𝑇𝐶𝐴𝐺𝐶𝐴
[︁
𝐺𝐶𝐴

]︁
𝐺𝐶𝑇

𝑇𝐶𝐴𝐺𝐶𝐴𝐺
[︁
𝐶𝐴𝐺

]︁
𝐶𝑇

𝑇𝐶𝐴𝐺𝐶𝐴𝐺𝐶
[︁
𝐴𝐺𝐶

]︁
𝑇

⇒ 𝑟𝑖𝑔ℎ𝑡_𝑟𝑜𝑙𝑙 = 3

5. Update position and alleles to fully justify within re-
gion of ambiguity.
To each trimmed allele from (1), prepend the left_roll
preceding reference bases and append the right_roll
following reference bases (corresponding to the inter-
base reference spans (1,5) and (5,8) respectively).
Decrement the start position by left_roll, and incre-
ment the end position by right_roll.

(1,8)
(“CAGCAGC”,
“CAGCAGCAGC”)

𝑇
[︁ 𝐶𝐴𝐺𝐶𝐴𝐺𝐶

𝐶𝐴𝐺𝐶𝐴𝐺𝐶𝐴𝐺𝐶

]︁
𝑇

4.2. Normalization 27

GA4GH Variation Representation Specification, Release 1.1.2

References

4.3 Computed Identifiers

VRS provides an algorithmic solution to deterministically generate a globally unique identifier from a VRS object
itself. All valid implementations of the VRS Computed Identifier will generate the same identifier when the objects
are identical, and will generate different identifiers when they are not. The VRS Computed Digest algorithm obviates
centralized registration services, allows computational pipelines to generate “private” ids efficiently, and makes it
easier for distributed groups to share data.

A VRS Computed Identifier for a VRS concept is computed as follows:

• The object SHOULD be normalized. Normalization formally applies to all VRS classes.

• Generate binary data to digest. If the object is a Sequence string, encode it using UTF-8. Otherwise, serialize
the object using Digest Serialization.

• Generate a truncated digest from the binary data.

• Construct an identifier based on the digest and object type.

Important: Normalizing objects is STRONGLY RECOMMENDED for interoperability. While normalization is
not strictly required, automated validation mechanisms are anticipated that will likely disqualify Variation that is not
normalized. See Implementations should normalize for a rationale.

The following diagram depicts the operations necessary to generate a computed identifier. These operations are de-
scribed in detail in the subsequent sections.

Fig. 1: Serialization, Digest, and Computed Identifier Operations
Entities are shown in gray boxes. Functions are denoted by bold italics. The yellow, green, and blue boxes, corresponding to the
sha512t24u, ga4gh_digest, and ga4gh_identify functions respectively, depict the dependencies among functions.
SHA512/192 is SHA-512 truncated at 192 bits using the systematic name recommended by SHA-512 (§5.3.6). base64url is the

official name of the variant of Base64 encoding that uses a URL-safe character set. [figure source]

Note: Most implementation users will need only the ga4gh_identify function. We describe the
ga4gh_serialize, ga4gh_digest, and sha512t24u functions here primarily for implementers.

28 Chapter 4. Implementation Guide

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648#section-5
https://tools.ietf.org/html/rfc4648
https://www.draw.io/?page-id=M8V1EMsVyfZQDDbK8gNL&title=VR%20diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fa%2Fharts.net%2Fuc%3Fid%3D1Qimkvi-Fnd1hhuixbd6aU4Se6zr5Nc1h%26export%3Ddownload

GA4GH Variation Representation Specification, Release 1.1.2

4.3.1 Requirements

Implementations MUST adhere to the following requirements:

• Implementations MUST use the normalization, serialization, and digest mechanisms described in this section
when generating GA4GH Computed Identifiers. Implementations MUST NOT use any other normalization,
serialization, or digest mechanism to generate a GA4GH Computed Identifier.

• Implementations MUST ensure that all nested objects are identified with GA4GH Computed Identifiers. Imple-
mentations MAY NOT reference nested objects using identifiers in any namespace other than ga4gh.

Note: The GA4GH schema MAY be used with identifiers from any namespace. For example, a SequenceLocation
may be defined using a sequence_id = refseq:NC_000019.10. However, an implementation of the Computed
Identifier algorithm MUST first translate sequence accessions to GA4GH SQ accessions to be compliant with this
specification.

4.3.2 Digest Serialization

Digest serialization converts a VRS object into a binary representation in preparation for computing a digest of the
object. The Digest Serialization specification ensures that all implementations serialize variation objects identically,
and therefore that the digests will also be identical. VRS provides validation tests to ensure compliance.

Important: Do not confuse Digest Serialization with JSON serialization or other serialization forms. Although
Digest Serialization and JSON serialization appear similar, they are NOT interchangeable and will generate different
GA4GH Digests.

Although several proposals exist for serializing arbitrary data in a consistent manner ([Gibson], [OLPC], [JCS]), none
have been ratified. As a result, VRS defines a custom serialization format that is consistent with these proposals but
does not rely on them for definition; it is hoped that a future ratified standard will be forward compatible with the
process described here.

The first step in serialization is to generate message content. If the object is a string representing a Sequence, the
serialization is the UTF-8 encoding of the string. Because this is a common operation, implementations are strongly
encouraged to precompute GA4GH sequence identifiers as described in Required External Data.

If the object is a composite VRS object, implementations MUST:

• ensure that objects are referenced with identifiers in the ga4gh namespace

• replace nested identifiable objects (i.e., objects that have id properties) with their corresponding digests

• order arrays of digests and ids by Unicode Character Set values

• filter out fields that start with underscore (e.g., _id)

• filter out fields with null values

The second step is to JSON serialize the message content with the following REQUIRED constraints:

• encode the serialization in UTF-8

• exclude insignificant whitespace, as defined in RFC8259§2

• order all keys by Unicode Character Set values

• use two-char escape codes when available, as defined in RFC8259§7

4.3. Computed Identifiers 29

https://github.com/ga4gh/vr-spec/
https://github.com/ga4gh/vr-spec/
https://tools.ietf.org/html/rfc8259#section-2
https://tools.ietf.org/html/rfc8259#section-7

GA4GH Variation Representation Specification, Release 1.1.2

The criteria for the digest serialization method was that it must be relatively easy and reliable to implement in any
common computer language.

Example

allele = models.Allele(location=models.SequenceLocation(
sequence_id="ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
interval=simple_interval),
state=models.SequenceState(sequence="T"))

ga4gh_serialize(allele)

Gives the following binary (UTF-8 encoded) data:

{"location":"u5fspwVbQ79QkX6GHLF8tXPCAXFJqRPx","state":{"sequence":"T","type":
→˓"SequenceState"},"type":"Allele"}

For comparison, here is one of many possible JSON serializations of the same object:

allele.for_json()

{
"location": {
"interval": {

"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {
"sequence": "T",
"type": "SequenceState"

},
"type": "Allele"

}

4.3.3 Truncated Digest (sha512t24u)

The sha512t24u truncated digest algorithm computes an ASCII digest from binary data. The method uses two well-
established standard algorithms, the SHA-512 hash function, which generates a binary digest from binary data, and
Base64 URL encoding, which encodes binary data using printable characters.

Computing the sha512t24u truncated digest for binary data consists of three steps:

1. Compute the SHA-512 digest of a binary data.

2. Truncate the digest to the left-most 24 bytes (192 bits). See Truncated Digest Timing and Collision Analysis for
the rationale for 24 bytes.

3. Encode the truncated digest as a base64url ASCII string.

>>> import base64, hashlib
>>> def sha512t24u(blob):

digest = hashlib.sha512(blob).digest()
tdigest = digest[:24]
tdigest_b64u = base64.urlsafe_b64encode(tdigest).decode("ASCII")

(continues on next page)

30 Chapter 4. Implementation Guide

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648#section-5

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

return tdigest_b64u
>>> sha512t24u(b"ACGT")
'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'

4.3.4 Identifier Construction

The final step of generating a computed identifier for a VRS object is to generate a W3C CURIE formatted identifier,
which has the form:

prefix ":" reference

The GA4GH VRS constructs computed identifiers as follows:

"ga4gh" ":" type_prefix "." <digest>

Warning: Do not confuse the W3C CURIE prefix (“ga4gh”) with the type prefix.

Type prefixes used by VRS are:

type_prefix VRS class name
SQ Sequence
VA Allele
VH Haplotype
VS VariationSet
VSL SequenceLocation
VCL ChromosomeLocation
VT Text

For example, the identifer for the allele example under Digest Serialization gives:

ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_

4.3.5 References

4.4 Example

This section provides a complete, language-neutral example of essential features of VR. In this example, we will
translate an HGVS-formatted variant, NC_000013.11:g.32936732G>C, into its VR format and assign a globally
unique identifier.

4.4.1 Translate HGVS to VR

Polymorphism in VR

VRS uses polymorphism extensively in order to provide a coherent top-down structure for variation while enabling
precise models for variation data.

4.4. Example 31

https://www.w3.org/TR/curie/

GA4GH Variation Representation Specification, Release 1.1.2

For example, Allele is a kind of Variation, SequenceLocation is a kind of Location, and SequenceState is a kind of
State. See Future Plans for the roadmap of VRS data classes and relationships.

All VRS objects contain a type attribute, which is used to discriminate polymorphic objects.

The hgvs string NC_000013.11:g.32936732G>C represents a single base substitution on the reference sequence
NC_000013.11 (human chromosome 13, assembly GRCh38) at position 32936732 from the reference nucleotide G to
C.

In VRS, a contiguous change is represented using an Allele object, which is composed of a Location and of the State
at that location. Location and State are abstract concepts: VRS is designed to accommodate many kinds of Locations
based on sequence position, gene names, cytogentic bands, or other ways of describing locations. Similarly, State may
refer to a specific sequence change, copy number change, or complex sequence event.

In this example, we will use a SequenceLocation, which is composed of a sequence identifier and a SimpleInterval.

In VRS, all identifiers are a Compact URI (CURIE). Therefore, NC_000013.11 MUST be written as the string
refseq:NC_000013.11 to make explicit that this sequence is from RefSeq . VRS does not restrict which data
sources may be used, but does recommend using prefixes from identifiers.org.

VRS uses Interbase Coordinates. Interbase coordinates always use intervals to refer to sequence spans. For the
purposes of this example, interbase coordinates look like the more familiar 0-based, right-open numbering system.
(Please read about Interbase Coordinates if you are interested in the significant advantages of this design choice over
other coordinate systems.)

The SimpleInterval for the position 32936732 is

{
"end": 32936732,
"start": 32936731,
"type": "SimpleInterval"

}

The interval is then ‘placed’ on a sequence to create the SequenceLocation:

{
"interval": {
"end": 32936732,
"start": 32936731,
"type": "SimpleInterval"

},
"sequence_id": "refseq:NC_000013.11",
"type": "SequenceLocation"

}

A SequenceState objects consists simply of the replacement sequence, as follows:

{
"sequence": "C",
"type": "SequenceState"

}

We are now in a position to construct an Allele object using the objects defined above:

{
"location": {
"interval": {

"end": 32936732,

(continues on next page)

32 Chapter 4. Implementation Guide

http://www.hgvs.org/
https://www.ncbi.nlm.nih.gov/nuccore/NC_000013.11
https://www.w3.org/TR/curie/
https://www.ncbi.nlm.nih.gov/refseq/
http://identifiers.org

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

"start": 32936731,
"type": "SimpleInterval"

},
"sequence_id": "refseq:NC_000013.11",
"type": "SequenceLocation"

},
"state": {
"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

}

This Allele is a fully-compliant VRS object that is parsable using the VRS JSON Schema.

Note: VRS is verbose! The goal of VRS is to provide a extensible framework for representation of sequence
variation in computers. VRS objects are readily parsable and have precise meaning, but are often larger than other
representations and are typically less readable by humans. This tradeoff is intentional!

4.4.2 Generate a computed identifer

A key feature of VRS is an easily-implemented algorithm to generate computed, digest-based identifiers for variation
objects. This algorithm permits organizations to generate the same identifier for the same allele without prior coordi-
nation, which in turn facilitates sharing, obviates centralized registration services, and enables identifiers to be used in
secure settings (such as diagnostic labs).

Generating a computed identifier requires that all nested objects also use computed identifiers. In this example, the se-
quence identifier MUST be transformed into a digest-based identifer as described in Computed Identifiers. In practice,
implmentations SHOULD precompute sequence digests or SHOULD use an existing service that does so. (See Re-
quired External Data for a description of data that are needed to implement VR.) In this case, refseq:NC_000013.
11 maps to ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT. All VRS computed identifiers begin with
the ga4gh prefix and use a type prefix (SQ, here) to denote the type of object. The VRS sequence identifier is then
substituted directly into the Allele’s location object:

{
"location": {
"interval": {

"end": 32936732,
"start": 32936731,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT",
"type": "SequenceLocation"

},
"state": {
"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

}

This, too, is a valid VRS Allele.

4.4. Example 33

GA4GH Variation Representation Specification, Release 1.1.2

Note: Using VRS sequence identifiers collapses differences between alleles due to trivial differences in reference
naming. The same variation reported on NC_000013.11, CM000675.2, GRCh38:13, GRCh38.p13:13 would appear
to be distinct variation; using a digest identifer will ensure that variation is reported on a single sequence identifier.
Furthermore, using digest-based sequence identifiers enables the use of custom reference sequences.

The first step in constructing a computed identifier is to create a binary digest serialization of the Allele. Details are
provided in Computed Identifiers. For this example the binary object looks like:

'{"location":"v9K0mcjQVugxTDIcdi7GBJ_R6fZ1lsYq","state":{"sequence":"C","type":
→˓"SequenceState"},"type":"Allele"}'
(UTF-8 encoded)

Important: The binary serialization is governed by constraints that guarantee that different implementations will
generate the same binary “blob”. Do not confuse binary digest serialization with JSON serialization, which is used
elsewhere with VRS schema.

The GA4GH digest for the above blob is computed using the first 192 bits (24 bytes) of the SHA-512 digest, base64url
encoded. Conceptually, the function is:

base64url(sha512(blob)[:24])

In this example, the value returned is n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH.

A GA4GH Computed Identifier has the form:

"ga4gh" ":" <type_prefix> "." <digest>

The type_prefix for a VRS Allele is VA, which results in the following computed identifier for our example:

ga4gh:VA.n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH

Variation and Location objects contain an OPTIONAL _id attribute which implementations may use to store any
CURIE-formatted identifier. If an implementation returns a computed identifier with objects, the object might look
like the following:

{
"_id": "ga4gh:VA.n9ax-9x6gOC0OEt73VMYqCBfqfxG1XUH",
"location": {
"interval": {

"end": 32936732,
"start": 32936731,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ._0wi-qoDrvram155UmcSC-zA5ZK4fpLT",
"type": "SequenceLocation"

},
"state": {
"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

}

This example provides a full VR-compliant Allele with a computed identifier.

34 Chapter 4. Implementation Guide

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648#section-5

GA4GH Variation Representation Specification, Release 1.1.2

Note: The _id attribute is optional. If it is used, the value MUST be a CURIE, but it does NOT need to be a GA4GH
Computed Identifier. Applications MAY choose to implement their own identifier scheme for private or public use.
For example, the above _id could be a serial number assigned by an application, such as acmecorp:v0000123.

4.4.3 What’s Next?

This example has shown a full example for a relatively simple case. VRS provides a framework that will enable much
more complex variation. Please see Future Plans for a discussion of variation classes that are intened in the near
future.

The Implementations section lists libraries and packages that implement VRS.

VRS objects are value objects. An important consequence of this design choice is that data should be associated with
VRS objects via their identifiers rather than embedded within those objects. The appendix contains an example of
associating annotations with variation.

4.4. Example 35

https://en.wikipedia.org/wiki/Value_object

GA4GH Variation Representation Specification, Release 1.1.2

36 Chapter 4. Implementation Guide

CHAPTER 5

Releases

Note: VRS follows Semantic Versioning 2.0. For a version number MAJOR.MINOR.PATCH:

• MAJOR version is incremented for incompatible API changes.

• MINOR version is incremented for new, backwards-compatible functionality. For VRS, this means changes that
add support for new types of variation or extend existing types.

• PATCH version is incremented for bug fixes. For VRS, examples are clarifications of documentation and bug
fixes on property constraints. No changes to information models will occur in PATCH releases.

All planned work The VRS Roadmap for upcoming developments. All currently planned work will be MINOR updates
according to the guidelines above.

5.1 1.1

5.1.1 1.1.2

This patch version makes the following corrections and clarifications:

• Adds the intended ChromosomeLocation prefix to the Computed Identifiers table.

• Revises the Cytoband information model to align with ISCN conventions.

• Updates the Cytoband regex to match the specified model.

5.1.2 1.1.1

This patch version makes the following corrections and clarifications:

• Correct styling / indexing of CytobandLocation in restructuredText to match the current Schema and ER Dia-
gram.

37

http://semver.org/
https://github.com/orgs/ga4gh/projects/5

GA4GH Variation Representation Specification, Release 1.1.2

• Remove erroneous bracket notation after CURIE from the locations attribute in the Allele information model.

• Revised Note in interbase design decision to acknowledge community terms.

5.1.3 1.1.0

1.1.0 is the second release of VRS.

New classes

• ChromosomeLocation: A region of a chromosomed specified by species and name using cytogenetic naming
conventions

• CytobandInterval: A contiguous region specified by chromosomal bands features.

• Haplotype: A set of zero or more Alleles.

• VariationSet: A set of Variation objects.

Other data model changes

• Interval was renamed to SequenceInterval. Interval was an internal class that was never instantiated, so this
change should not be visiable to users.

Documentation changes

• Added Relationship of VRS to existing standards to describe how VRS relates to other standards.

• Updated Normalization to clarify handling of reference alleles and generalize terminology to apply to all VRS
objects.

• Updated current and future schema diagrams.

• Included a discussion of the Release Cycle.

5.2 1.0

5.2.1 1.0.0

VRS 1.0.0 was the first public release of the Variation Representation Specification.

38 Chapter 5. Releases

CHAPTER 6

Appendices

6.1 Relationship of VRS to existing standards

Because a primary objective of the GA4GH Variation Representation Specification (VRS) effort is to unify disparate
efforts to represent biological sequence variation, it is important to describe how this document relates to previous
work in order to avoid “reinventing the wheel”.

The Variant Call Format (VCF) is the de facto standard for representing alleles, particularly for use during primary
analysis in high-throughput sequencing pipelines. VCF permits a wide range of annotations on alleles, such as quality
and likelihood scores. VCF is a file-based format and is exclusively for genomic alleles. In contrast, the VRS data
model abstractly represents Alleles, Haplotypes, and Genotypes on all sequence types, is independent of medium, and
is well-suited to secondary analyses, allele interpretation, aggregation, and system-level interoperability.

The HGVS nomenclature recommendations describe how sequence variation should be presented to human beings.
In addition to representing a wide variety of sequence changes from single residue variation through large cytoge-
netic events, HGVS attempts to also encode in strings notions of biological mechanism (e.g., inversion as a kind
of deletion-insertion event), predicted events (e.g., parentheses for computing protein sequence), and complex states
(e.g., mosaicism). In practice, HGVS recommendations are difficult to implement fully and consistently, leading to
ambiguity in presentation. In contrast, the VRS is a formal specification that improves consistency of representation
among computer systems. VRS is currently less expressive than HGVS for rarer cases of variation, such as cyto-
genetic variation or context-based allele representations (e.g., insT written as dupT when the insertion follows a T).
Future versions of the specification will seek to address limitations while preserving principles of conceptual clarity
and precision.

The Sequence Ontology (SO) is a set of terms and relationships used to describe the features and attributes of biological
sequence. The focus of the SO has been the annotation of, or placement of ‘meaning’, onto genomic sequence regions.
The VRS effort seeks to use the same descriptive definitions where possible, and to inform the refinement of SO.

The Genotype Ontology (GENO) builds on the SO to include richer modeling of genetic variation at different levels
of granularity that are captured in genotype representations. Unlike the SO which is used primarily for annotation
of genomic features, GENO was developed by the Monarch Initiative to support semantic data models for integrated
representation of genotypes and genetic variants described in human and model organism databases. The core of the
GENO model decomposes a genotype specifying sequence variation across an entire genome into smaller components
of variation (e.g. allelic composition at a particular locus, haplotypes, gene alleles, and specific sequence alterations).

39

GA4GH Variation Representation Specification, Release 1.1.2

GENO also enables description of biological attributes of these genetic entities (e.g. zygosity, phase, copy number,
parental origin, genomic position), and their causal relationships with phenotypes and diseases.

ClinVar is an archive of clinically reported relationships between variation and phenotypes along with interpretations
and supporting evidence. Data in ClinVar are submitted primarily by diagnostic labs. ClinVar includes expert reviews
and data links to other clinically-relevant resources at NCBI. The VRS specification is expected to facilitate data
submissions by providing unified guidelines for data structure and allele normalization.

ClinGen provides a centralized database of genomic and phenotypic data provided by clinicians, researchers, and
patients. It standardizes clinical annotation and interpretation of genomic variants and provides evidence-based expert
consensus for curated genes and variants. ClinGen has informed the VRS effort and is committed to harmonizing and
collaborating on the evolution of the VRS specification to achieve improved data sharing.

HL7 FHIR Genomics, Version 2 Clinical Genomics Implementation Guide, CDA Genetic Test Report: There are
several standards developed under the HL7 umbrella that include a genomics component. The FHIR Genomics com-
ponent was released as part of the overall FHIR specification (latest is Release 3) based on standardized use cases.
The HL7 Clinical Genomics (CG) Work Group focuses on developing standards for clinical genomic data and related
relevant information within EHRs. The specifications developed by the CG work group primarily utilize the HL7 v2
messaging standard and the newer HL7 FHIR (Fast Healthcare Interoperability Resources) framework.

The SPDI format created to represent alleles in NCBI’s Variation Services has four components: the sequence iden-
tifier, which is specified with a sequence accession and version; the 0-based interbase coordinate where the deletion
starts; the deleted sequence (or its length) and the inserted sequence. The Variation Services return the minimum
deleted sequence required to avoid over precision. For example, a deletion of one G in a run of 4 is specified with
deleted and inserted sequences of GGGG and GGG respectively, avoiding the need to left or right shift the minimal
representation. This reduces ambiguity, but can lead to long allele descriptions.

6.2 Associating Annotations with VRS Objects

This example demonstrates how to associate information with VR objects. Although the examples use the GA4GH
VR Python Implementation library, the principles apply regardless of implementation.

Information is never embedded within VRS objects. Instead, it is associated with those objects by means of their ids.
This approach to annotations scales better in size and distributes better across multiple data sources.

import collections
from ga4gh.vr import ga4gh_identify, models
from ga4gh.vr.dataproxy import SeqRepoRESTDataProxy
from ga4gh.vr.extras.translator import Translator

Requires seqrepo REST interface is running on this URL (e.g., using docker image)
seqrepo_rest_service_url = "http://localhost:5000/seqrepo"
dp = SeqRepoRESTDataProxy(base_url=seqrepo_rest_service_url)

tlr = Translator(data_proxy=dp)

Declare some data as human-readable RS id labels with HGVS expressions
data = (

("rs7412C", "NC_000019.10:g.44908822="),
("rs7412T", "NC_000019.10:g.44908822C>T"),
("rs429358C", "NC_000019.10:g.44908684="),
("rs429358T", "NC_000019.10:g.44908684T>C")

)

40 Chapter 6. Appendices

https://github.com/ga4gh/vr-python/
https://github.com/ga4gh/vr-python/

GA4GH Variation Representation Specification, Release 1.1.2

Parse the HGVS expressions and generate three dicts:
alleles[allele_id] allele object
rs_names[allele_id] rs label
hgvs_name[allele_id] original hgvs expression

For convenience, also build
rs_to_id[rs_name] allele_id

alleles = {}
rs_names = {}
hgvs_names = collections.defaultdict(lambda: dict())
for rs, hgvs_expr in data:

allele = tlr.from_hgvs(hgvs_expr)
allele_id = ga4gh_identify(allele)
alleles[allele_id] = allele
hgvs_names[allele_id] = hgvs_expr
rs_names[allele_id] = rs

rs_to_id = {r: i for i, r in rs_names.items()}

Now, build a new set of annotations: allele frequencies
This is more complicated because it maps to a map of frequences
It should be clear that other frequencies could be easily added here
or as a separate data source
freqs = {

"gnomad": {
"global": {

rs_to_id["rs7412C"]: 0.9385,
rs_to_id["rs7412T"]: 0.0615,
rs_to_id["rs429358C"]: 0.1385,
rs_to_id["rs429358T"]: 0.8615,

}
}

}

It might be convenient to save these data
A saved document might have structure like this:
doc = {

"alleles": alleles,
"hgvs_names": hgvs_names,
"rs_names": rs_names,
"freqs": freqs

}

For the benefit of pretty printing, let's replace the allele objects with their
→˓dict representations
doc["alleles"] = {i: a.as_dict() for i, a in doc["alleles"].items()}
import json
print(json.dumps(doc, indent=2))

{
"alleles": {

"ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": {
"location": {

"interval": {
"end": 44908822,

6.2. Associating Annotations with VRS Objects 41

GA4GH Variation Representation Specification, Release 1.1.2

"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

},
"ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": {

"location": {
"interval": {

"end": 44908822,
"start": 44908821,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "T",
"type": "SequenceState"

},
"type": "Allele"

},
"ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": {

"location": {
"interval": {

"end": 44908684,
"start": 44908683,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},
"state": {

"sequence": "T",
"type": "SequenceState"

},
"type": "Allele"

},
"ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": {

"location": {
"interval": {

"end": 44908684,
"start": 44908683,
"type": "SimpleInterval"

},
"sequence_id": "ga4gh:SQ.IIB53T8CNeJJdUqzn9V_JnRtQadwWCbl",
"type": "SequenceLocation"

},

42 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

"state": {
"sequence": "C",
"type": "SequenceState"

},
"type": "Allele"

}
},
"hgvs_names": {

"ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": "NC_000019.10:g.44908822=",
"ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": "NC_000019.10:g.44908822C>T",
"ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": "NC_000019.10:g.44908684=",
"ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": "NC_000019.10:g.44908684T>C"

},
"rs_names": {

"ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": "rs7412C",
"ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": "rs7412T",
"ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": "rs429358C",
"ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": "rs429358T"

},
"freqs": {

"gnomad": {
"global": {

"ga4gh:VA.UUvQpMYU5x8XXBS-RhBhmipTWe2AALzj": 0.9385,
"ga4gh:VA.EgHPXXhULTwoP4-ACfs-YCXaeUQJBjH_": 0.0615,
"ga4gh:VA.LQrGFIOAP8wEAybwNBo8pJ3yIG7tXWoh": 0.1385,
"ga4gh:VA.iXjilHZiyCEoD3wVMPMXG3B8BtYfL88H": 0.8615

}
}

}
}

6.3 Design Decisions

VRS contributors confronted numerous trade-offs in developing this specification. As these trade-offs may not be
apparent to outside readers, this section highlights the most significant ones and the rationale for our design decisions,
including:

6.3.1 Variation Rather than Variant

The abstract Variation class is intentionally not labeled “Variant”, despite this being the primary term used in other
molecular variation exchange formats (e.g. Variant Call Format, HGVS Sequence Variant Nomenclature). This is
because the term “Variant” as used in the Genetics community is intended to describe discrete changes in nucleotide
/ amino acid sequence. “Variation”, in contrast, captures other classes of molecular variation, including epigenetic
alteration and transcript abundance. Capturing these other classes of variation is a future goal of VRS, as there are
many annotations that will require these variation classes as the subject.

6.3.2 Allele Rather than Variant

The most primitive sequence assertion in VRS is the Allele entity. Colloquially, the words “allele” and “variant” have
similar meanings and they are often used interchangeably. However, the VR contributors believe that it is essential to
distinguish the state of the sequence from the change between states of a sequence. It is imperative that precise terms

6.3. Design Decisions 43

GA4GH Variation Representation Specification, Release 1.1.2

are used when modelling data. Therefore, within VRS, Allele refers to a state and “variant” refers to the change from
one Allele to another.

The word “variant”, which implies change, makes it awkward to refer to the (unchanged) reference allele. Some
systems will use an HGVS-like syntax (e.g., NC_000019.10:g.44906586G>G or NC_000019.10:g.44906586=) when
referring to an unchanged residue. In some cases, such “variants” are even associated with allele frequencies. Simi-
larly, a predicted consequence is better associated with an allele than with a variant.

6.3.3 Implementations should normalize

VRS STRONGLY RECOMMENDS that Alleles be normalized when generating computed identifiers. The rationale
for recommending, rather than requiring, normalization is grounded in dual views of Allele objects with distinct
interpretations:

• Allele as minimal representation of a change in sequence. In this view, normalization is a process that makes
the representation minimal and unambiguous.

• Allele as an assertion of state. In this view, it is reasonable to want to assert state that may include (or be
composed entirely of) reference bases, for which the normalization process would alter the intent.

Although this rationale applies only to Alleles, it may have have parallels with other VRS types. In addition, it is
desirable for all VRS types to be treated similarly.

Furthermore, if normalization were required in order to generate Computed Identifiers, but did not apply to certain
instances of VRS Variation, implementations would likely require secondary identifier mechanisms, which would
undermine the intent of a global computed identifier.

The primary downside of not requiring normalization is that Variation objects might be written in non-canonical forms,
thereby creating unintended degeneracy.

Therefore, normalization of all VRS Variation classes is optional in order to support the view of Allele as an assertion
of state on a sequence.

6.3.4 Alleles are Fully Justified

In order to standardize the representation of sequence variation, Alleles SHOULD be fully justified from the descrip-
tion of the NCBI Variant Overprecision Correction Algorithm (VOCA). Furthermore, normalization rules are identical
for all sequence types (DNA, RNA, and protein).

The choice of algorithm was relatively straightforward: VOCA is published, easily understood, easily implemented,
and covers a wide range of cases.

The choice to fully justify is a departure from other common variation formats. The HGVS nomenclature recommen-
dations, originally published in 1998, require that alleles be right normalized (3’ rule) on all sequence types. The
Variant Call Format (VCF), released as a PDF specification in 2009, made the conflicting choice to write variants left
(5’) normalized and anchored to the previous nucleotide.

Fully-justified alleles represent an alternate approach. A fully-justified representation does not make an arbitrary
choice of where a variant truly occurs in a low-complexity region, but rather describes the final and unambiguous state
of the resultant sequence.

6.3.5 Interbase Coordinates

Sequence ranges use an interbase coordinate system. Interbase coordinate conventions are used in this terminology
because they provide conceptual consistency that is not possible with residue-based systems.

44 Chapter 6. Appendices

https://www.biorxiv.org/content/10.1101/537449v3.full
https://varnomen.hgvs.org/recommendations/general/
https://genome.sph.umich.edu/wiki/Variant_Normalization#Definition
https://genome.sph.umich.edu/wiki/Variant_Normalization#Definition

GA4GH Variation Representation Specification, Release 1.1.2

Important: The choice of what to count–base or interbase positions–-has significant semantic implications for
coordinates. In some circumstances, interbase coordinates and the corresponding base coordinates are numerically
identical. We intentionally avoid describing the interbase coordinate system as “0-based” (a popular community term,
as is “space-based”) to help reduce confusion on the meaning of the coordinates used in VRS.

When humans refer to a range of residues within a sequence, the most common convention is to use an interval of
ordinal residue positions in the sequence. While natural for humans, this convention has several shortcomings when
dealing with sequence variation.

For example, interval coordinates are interpreted as exclusive coordinates for insertions, but as inclusive coordinates
for substitutions and deletions; in effect, the interpretation of coordinates depends on the variant type, which is an
unfortunate coupling of distinct concepts.

6.3.6 Modelling Language

The VRS collaborators investigated numerous options for modelling data, generating code, and writing the wire pro-
tocol. Required and desired selection criteria included:

• language-neutral – or at least C/C++, java, python

• high-quality tooling/libraries

• high-quality code generation

• documentation generation

• supported constructs and data types

– typedefs/aliases

– enums

– lists, maps, and maps of lists/maps

– nested objects

• protocol versioning (but not necessarily automatic adaptation)

Initial versions of the VRS logical model were implemented in UML, protobuf, and swagger/OpenAPI, and JSON
Schema. We have implemented our schema in JSON Schema. Nonetheless, it is anticipated that some adopters of the
VRS logical model may implement the specification in other protocols.

6.3.7 Serialization Strategy

There are many packages and proposals that aspire to a canonical form for json in many languages. Despite this, there
are no ratified or de facto winners. Many packages have similar names, which makes it difficult to discern whether
they are related or not (often not). Although some packages look like good single-language candidates, none are ready
for multi-language use. Many seem abandoned. The need for a canonical json form is evident, and there was at least
one proposal for an ECMA standard.

Therefore, we implemented our own serialization format, which is very similar to Gibson Canonical JSON (not to be
confused with OLPC Canonical JSON).

6.3. Design Decisions 45

http://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON

GA4GH Variation Representation Specification, Release 1.1.2

6.3.8 Not using External Chromosome Declarations

In ChromosomeLocation, the tuple <species,chromosome name> refers an archetypal chromosome for the species.
WikiData and MeSH provide such definitions (e.g., Human Chr 1 at WikiData and MeSH) and were considered, and
rejected, for use in VRS. Both ontologies were anticipated to increase complexity that was not justified by the benefit
to VRS. In addition, data in WikiData are crowd-sourced and therefore potentially unstable, and the species coverage
in MeSH was insufficient for anticipated VRS uses.

6.4 Development Process

6.4.1 Release Cycle

Fig. 1: The VRS development process.

The release cycle is implemented in the VR project board, which is the authoritative source of information about
development status.

Planned Features

Feature requests from the community are made through the generation of GitHub issues on the VRS repository, which
are open for public review and discussion.

Project Leadership Review

Open issues are reviewed and triaged by the Project Leadership. Feature requests identified to support an unmet need
are added to the Backburner project column and scheduled for discussion in our weekly VR calls. These discussions
are used to inform whether or not a feature will be planned for development. The Project Maintainers are responsible
for making the final determination on whether or not a feature should be added to VRS.

Requirements Gathering

Once a planned feature is introduced in call, the issue moves to the Planning project column. During this phase,
community feedback on use cases and technical requirements will be collected (see example requirement issues).
Deadlines for submitting cases will be set by the Project Maintainers.

46 Chapter 6. Appendices

https://www.wikidata.org/
https://www.ncbi.nlm.nih.gov/mesh/
https://www.wikidata.org/wiki/Q430258
https://meshb.nlm.nih.gov/record/ui?ui=D002878
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec
https://github.com/ga4gh/vr-spec/issues
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-9024746
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-8939340
https://github.com/ga4gh/vr-spec/labels/requirements

GA4GH Variation Representation Specification, Release 1.1.2

Requirements Discussion

Once the requirements gathering phase has been completed, the issue moves to the Backlog/Ready for Dev project
column. In this phase, the requirements undergo review and discussion by the community on VR calls.

Feature Development

After community review of requirements, the issue moves on to the In Progress project column. In this stage, the
draft features will be developed as a draft Pull Request (PR). The draft author will indicate that a feature is ready for
community review by marking the PR as “Ready for review” (at which point the PR loses “draft” status).

Feature Review

Once a PR is ready for review, the Project Maintainers will move the corresponding issue to the QA/Feedback project
column. Pull requests ready for public review MAY be merged into the master branch by through review and approval
by at least one (non-authoring) Project Maintainer. Merged commits MAY be tagged as alpha releases when needed.
After merging, corresponding issues are moved to the Done project column and are closed.

Version Review and Release

After completion of all planned features for a new minor or major version, a request for community review will
be indicated by a beta release of the new version. Community stakeholders involved in the feature requests and
requirements gathering for the included features are notified by Project Maintainers for review and approval of the
release. After a community review period of at least two weeks, the Project Leadership will review and address any
raised concerns for the reviewed version.

After passing review, new minor versions are released to production. If any features in the reviewed version are
deemed to be significant additions to the specification by the Project Leadership, or if it is a major version change,
instead a release candidate version will be released and submitted for GA4GH product approval. After approval, the
new version is released to production.

VRS follows GA4GH project versioning recommendations, based on Semantic Versioning 2.0. The VRS GitHub
repository master branch contains the latest development code for community review (see Release Cycle).

6.4.2 Leadership

Project Leadership

As a product of the Genomic Knowledge Standards (GKS) Work Stream, project leadership is comprised of the Work
Stream leadership:

• Alex Wagner (@ahwagner)

• Andy Yates (@andrewyatz)

• Bob Freimuth (@rrfreimuth)

• Javier Lopez (@javild)

• Larry Babb (@larrybabb)

• Matt Brush (@mbrush)

• Melissa Konopko (@MKonopko)

• Reece Hart (@reece)

6.4. Development Process 47

https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-5274081
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-5274078
https://github.com/ga4gh/vr-spec/pulls
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-8087350
https://github.com/orgs/ga4gh/projects/5?card_filter_query=repo%3Aga4gh%2Fvr-spec#column-5274079
https://docs.google.com/document/d/1UUJSnsPw32W5r1jaJ0vI11X0LLLygpAC9TNosjSge_w/edit#heading=h.6672fcrbpqsk
http://semver.org/
https://ga4gh-gks.github.io/
https://ga4gh-gks.github.io/
https://github.com/ahwagner
https://github.com/andrewyatz
https://github.com/rrfreimuth
https://github.com/javild
https://github.com/larrybabb
https://github.com/mbrush
https://github.com/MKonopko
https://github.com/reece

GA4GH Variation Representation Specification, Release 1.1.2

Project Maintainers

Project maintainers are the leads of the GKS Variation Representation working group:

• Alex Wagner (@ahwagner)

• Larry Babb (@larrybabb)

• Reece Hart (@reece)

6.5 Future Plans

6.5.1 Overview

VRS covers a fundamental subset of data types to represent variation, thus far predominantly related to the replacement
of a subsequence in a reference sequence. Increasing its applicability will require supporting more complex types of
variation, including:

• alternative coordinate types such as nested ranges

• feature-based coordinates such as genes, cytogenetic bands, and exons

• copy number variation

• structural variation

• mosaicism and chimerism

• rule-based variation

The following sections provide a preview of planned concepts under way to address a broader representation of varia-
tion.

6.5.2 Intervals and Locations

VRS uses Location (Abstract Class) subclasses to define where variation occurs. The schema is designed to be ex-
tensible to new kinds of Intervals and Locations in order to support, for example, fuzzy coordinates or feature-based
locations.

NestedInterval

Biological definition

None

Computational definition

An SequenceInterval (Abstract Class) comprised of an inner and outer SimpleInterval. The NestedInterval allows for
the definition of “fuzzy” range endpoints by designating a potentially included region (the outer SimpleInterval) and
required included region (the inner SimpleInterval).

Information model

Field Type Limits Description
type string 1..1 Interval type; MUST be set to ‘NestedInterval’
inner SimpleInterval 1..1 known interval
outer SimpleInterval 1..1 potential interval

48 Chapter 6. Appendices

https://github.com/ahwagner
https://github.com/larrybabb
https://github.com/reece

GA4GH Variation Representation Specification, Release 1.1.2

Fig. 2: Planned Variation Representation Specfication Schema
See Current schema diagram for legend.

Existing classes are colored green. Components that are undergoing testing and evaluation and are candidates for the next release
cycle are yellow. Components that are planned but still undergoing requirement gathering and initial development are colored red.

[source]

6.5. Future Plans 49

https://app.diagrams.net/#G1Qimkvi-Fnd1hhuixbd6aU4Se6zr5Nc1h

GA4GH Variation Representation Specification, Release 1.1.2

Implementation guidance

• Implementations MUST enforce values 0 outer.start inner.start inner.end outer.end. In the case of double-
stranded DNA, this constraint holds even when a feature is on the complementary strand.

ComplexInterval

Biological definition

Representation of complex coordinates based on relative locations or offsets from a known location. Examples include
“left of” a given position and intronic positions measured from intron-exon junctions.

Computational definition

Under development.

Information model

Under development.

GeneLocation

Biological definition

The symbolic location of a gene.

Computational definition

A gene location is made by reference to a gene identifier from NCBI, Ensembl, HGNC, or other public trusted author-
ity.

Information model

Field Type Limits Description
_id CURIE 0..1 Location Id; MUST be unique within document
type string 1..1 Location type; MUST be set to ‘GeneLocation’
gene_id CURIE 1..1 CURIE-formatted gene identifier using NCBI numeric gene id.

Notes

• gene_id MUST be specified as a CURIE, using a CURIE prefix of “NCBI” and CURIE reference with the
numeric gene id. Other trusted authorities MAY be permitted in future releases.

Implementation guidance

• GeneLocations MAY be converted to SequenceLocation using external data. The source of such data and mech-
anism for implementation is not defined by this specification.

6.5.3 State Classes

Additional State (Abstract Class) concepts that are being planned for future consideration in the specification.

50 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

CNVState

Note: This concept is being refined. Please comment at https://github.com/ga4gh/vr-spec/issues/46.

Biological definition

Variations in the number of copies of a segment of DNA. Copy number variations cover copy losses or gains and at
known or unknown locations (including tandem repeats). Variations MAY occur at precise SequenceLocations, within
nested intervals, or at GeneLocations. There is no lower or upper bound on CNV sizes.

Computational definition

Under development.

Information model

Field Type Limits Description
type string 1..1 State type; MUST be set to ‘CNVState’
location Location (Abstract Class) 1..1 the Location of the copy (‘null’ if unknown)
min_copies int 1..1 The minimum number of copies
max_copies int 1..1 The maximum number of copies

6.5.4 Variation Classes

Additional Variation concepts that are being planned for future consideration in the specification. See Variation for
more information.

Translocations

Note: This concept is being refined. Please comment at https://github.com/ga4gh/vr-spec/issues/103

Biological definition

The aberrant joining of two segments of DNA that are not typically contiguous. In the context of joining two distinct
coding sequences, translocations result in a gene fusion, which is also covered by this VRS definition.

Computational definition

A joining of two sequences is defined by two Location (Abstract Class) objects and an indication of the join “pattern”
(advice needed on conventional terminology, if any).

Information model

Under consideration. See https://github.com/ga4gh/vr-spec/issues/28.

Examples

t(9;22)(q34;q11) in BCR-ABL

Genotype

Biological definition

6.5. Future Plans 51

https://github.com/ga4gh/vr-spec/issues/46
https://github.com/ga4gh/vr-spec/issues/103
https://github.com/ga4gh/vr-spec/issues/28

GA4GH Variation Representation Specification, Release 1.1.2

The genetic state of an organism, whether complete (defined over the whole genome) or incomplete (defined over a
subset of the genome).

Computational definition

A list of Haplotypes.

Information model

Field Type Limits Description
_id CURIE 0..1 Variation Id; MUST be

unique within document
type string 1..1 Variation type; MUST be

set to ‘Genotype’
completeness enum 1..1 Declaration of complete-

ness of the Haplotype def-
inition. Values are:

• UNKNOWN: Other
Haplotypes may ex-
ist.

• PARTIAL: Other
Haplotypes exist
but are unspecified.

• COMPLETE: The
Genotype declares
a complete set of
Haplotypes.

members Haplotype[] or CURIE[] 0..* List of Haplotypes or
Haplotype identifiers;
length MUST agree with
ploidy of genomic region

Implementation guidance

• Haplotypes in a Genotype MAY occur at different locations or on different reference sequences. For example,
an individual may have haplotypes on two population-specific references.

• Haplotypes in a Genotype MAY contain differing numbers of Alleles or Alleles at different Locations.

Notes

• The term “genotype” has two, related definitions in common use. The narrower definition is a set of alleles
observed at a single location and with a ploidy of two, such as a pair of single residue variants on an autosome.
The broader, generalized definition is a set of alleles at multiple locations and/or with ploidy other than two.The
VRS Genotype entity is based on this broader definition.

• The term “diplotype” is often used to refer to two haplotypes. The VRS Genotype entity subsumes the conven-
tional definition of diplotype. Therefore, the VRS model does not include an explicit entity for diplotypes. See
this note for a discussion.

• The VRS model makes no assumptions about ploidy of an organism or individual. The number of Haplotypes
in a Genotype is the observed ploidy of the individual.

• In diploid organisms, there are typically two instances of each autosomal chromosome, and therefore two in-
stances of sequence at a particular location. Thus, Genotypes will often list two Haplotypes. In the case of
haploid chromosomes or haploinsufficiency, the Genotype consists of a single Haplotype.

52 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

• A consequence of the computational definition is that Haplotypes at overlapping or adjacent intervals MUST
NOT be included in the same Genotype. However, two or more Alleles MAY always be rewritten as an equiva-
lent Allele with a common sequence and interval context.

• The rationale for permitting Genotypes with Haplotypes defined on different reference sequences is to enable the
accurate representation of segments of DNA with the most appropriate population-specific reference sequence.

Sources

SO: Genotype (SO:0001027) — A genotype is a variant genome, complete or incomplete.

Note: Genotypes represent Haplotypes with arbitrary ploidy The VRS defines Haplotypes as a list of Alleles, and
Genotypes as a list of Haplotypes. In essence, Haplotypes and Genotypes represent two distinct dimensions of con-
tainment: Haplotypes represent the “in phase” relationship of Alleles while Genotypes represents sets of Haplotypes
of arbitrary ploidy.

There are two important consequences of these definitions: There is no single-location Genotype. Users of SNP data
will be familiar with representations like rs7412 C/C, which indicates the diploid state at a position. In the VRS, this
is merely a special case of a Genotype with two Haplotypes, each of which is defined with only one Allele (the same
Allele in this case). The VRS does not define a diplotype type. A diplotype is a special case of a VRS Genotype
with exactly two Haplotypes. In practice, software data types that assume a ploidy of 2 make it very difficult to
represent haploid states, copy number loss, and copy number gain, all of which occur when representing human data.
In addition, assuming ploidy=2 makes software incompatible with organisms with other ploidy. The VRS makes no
assumptions about “normal” ploidy.

In other words, the VRS does not represent single-position Genotypes or diplotypes because both concepts are sub-
sumed by the Allele, Haplotype, and Genotypes entities.

6.5.5 Rule-based Variation

Some variations are defined by categorical concepts, rather than specific locations and states. These variations go by
many terms, including categorical variants, bucket variants, container variants, or variant classes. These forms of
variation are not described by any broadly-recognized variation format, but modeling them is a key requirement for
the representation of aggregate variation descriptions as commonly found in biomedical literature. Our future work
will focus on the formal specification for representing these variations with sets of rules, which we currently call
Rule-based Variation.

RuleLocation

RuleLocation is a subclass of Location (Abstract Class) intended to capture locations defined by rules instead of
specific contiguous sequences. This includes locations defined by sequence characteristics, e.g. microsatellite regions.

RuleState

RuleState is a subclass of State (Abstract Class) intended to capture states defined by categorical rules instead of
sequence states. This includes gain- / loss-of-function, oncogenic, and truncating variation.

6.6 Proposal for GA4GH-wide Computed Identifier Standard

This appendix describes a proposal for creating a GA4GH-wide standard for serializing data, computing digests on
serialized data, and constructing CURIE identifiers from the digests. Essentially, it is a generalization of the Computed

6.6. Proposal for GA4GH-wide Computed Identifier Standard 53

http://www.sequenceontology.org/browser/current_svn/term/SO:0001027

GA4GH Variation Representation Specification, Release 1.1.2

Identifiers section.

This standard is proposed now because VRS needs a well-defined mechanism for generating identifiers. Changing the
identifier mechanism later will create significant issues for VR adopters.

6.6.1 Background

The GA4GH mission entails structuring, connecting, and sharing data reliably. A key component of this effort is to
be able to identify entities, that is, to associate identifiers with entities. Ideally, there will be exactly one identifier
for each entity, and one entity for each identifier. Traditionally, identifiers are assigned to entities, which means that
disconnected groups must coordinate on identifier assignment.

The computed identifier scheme proposed in VRS computes identifiers from the data itself. Because identifers depend
on the data, groups that independently generate the same variation will generate the same computed identifier for that
entity, thereby obviating centralized identifier systems and enabling identifiers to be used in isolated settings such as
clinical labs.

The computed identifier mechanism is broadly applicable and useful to the entire GA4GH ecosystem. Adopting a
common identifier scheme will make interoperability of GA4GH entities more obvious to consumers, will enable
the entire organization to share common entity definitions (such as sequence identifiers), and will enable all GA4GH
products to share tooling that manipulate identified data. In short, it provides an important consistency within the
GA4GH ecosystem.

As a result, we are proposing that the computed identifier scheme described in VRS be considered for adoption as a
GA4GH-wide standard. If the proposal is accepted by the GA4GH executive committee, the current VRS proposal
will stand as-is; if the proposal is rejected, the VRS proposal will be modified to rescope the computed identifier
mechanism to VR and under admininstration of the VR team.

6.6.2 Proposal

The following algorithmic processes, described in depth in the VR Computed Identifiers proposal, are included in this
proposal by reference:

• GA4GH Digest Serialization is the process of converting an object to a canonical binary form based on JSON
and inspired by similar (but unratified) JSON standards. This serialization for is used only for the purposes of
computing a digest.

• GA4GH Truncated Digest is a convention for using SHA-512, truncated to 24 bytes, and encoding using
base64url.

• GA4GH Identification is the CURIE-based syntax for constructing a namespaced and typed identifier for an
object.

6.6.3 Type Prefixes

A GA4GH identifier is proposed to be constructed according to this syntax:

"ga4gh" ":" type_prefix "." digest

The digest is computed as described above. The type_prefix is a short alphanumeric code that corresponds to the type
of object being represented. If this propsal is accepted, this “type prefix map” would be administered by GA4GH.
(Currently, this map is maintained in a YAML file within the VRS repository, but it would be relocated on approval of
this proposal.)

We propose the following guidelines for type prefixes:

54 Chapter 6. Appendices

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648#section-5

GA4GH Variation Representation Specification, Release 1.1.2

• Prefixes SHOULD be short, approximately 2-4 characters.

• Prefixes SHOULD be for concrete types, not polymorphic parent classes.

• A prefix MUST map 1:1 with a schema type.

• Variation Representation types SHOULD start with V.

• Variation Annotation types SHOULD start with A.

6.6.4 Administration

If accepted, administration of these guidelines should be transferred to a technical steering committee. If not accepted,
the VR team will assume administration of the existing prefixes.

6.7 Implementations

The libraries and applications listed below have implemented the GA4GH Variation Representation Specification to
store and exchange variation data. They are listed here to demonstrate utility and as a resource for those considering
implementing VRS. These packages are not supported by GA4GH.

6.7.1 Libraries

Libraries facilitate the use of the VRS, but do not implement a particular use or application. Although there is only
one library currently, it is expected that others will eventually appear as VRS is adopted.

vr-python: GA4GH VRS Python Implementation

The GA4GH VR Python Implementation is an implementation for the GA4GH VRS. It supports all types covered by
the VRS, implements Allele normalization and computed identifier generation, and provides “extra” features such as
translation from HGVS, SPDI, and VCF formats. See vr-python notebooks for usage examples.

VRS MAY be used without using the Python implementation.

6.7.2 Applications and Web Services

Applications implement VRS to support specific use cases. Projects known to implement VRS are listed below.
Descriptions are provided by the application authors.

ClinGen Allele Registry

ClinGen Allele Registry1 provides identifiers for more than 900 million variants. Each identifier (canonical allele
identifiers: CAIds) is an abstract concept which represents a group of identical variants based on alignment. Identifiers
are retrievable irrespective of the reference sequence and normalization status.

As a Driver Project for GA4GH, ClinGen Allele Registry implements two standards: RefGet and VRS in the first
implementation.

The API endpoints that support data retrieval in this two key standards are summarized in the following table.

HOST: https//reg.clinicalgenome.org/

1 Pawliczek P, Patel RY, et al. ClinGen Allele Registry links information about genetic variants. Hum Mutat 11 (2018). doi:10.1002/humu.23637

6.7. Implementations 55

https://github.com/ga4gh/vr-python/
https://github.com/ga4gh/vr-python/blob/master/notebooks
https://github.com/ga4gh/vr-spec/
https://reg.clinicalgenome.org
https://reg.clinicalgenome.org
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23637

GA4GH Variation Representation Specification, Release 1.1.2

API Path Parameters Re-
sponse
Format

Example

RefGet
[GET]
/sequence/service-
info

- Refget
v1.0.0

/sequence/service-info

[GET] /se-
quence/{id}

id => TRUNC512 digest
for reference sequence

Refget
v1.0.0

/sequence/vYfm5TA_F-
_BtIGjfzjGOj8b6IK5hCTx

[GET] /se-
quence/{id}/metadata

id => TRUNC512 digest
for reference sequence

Refget
v1.0.0

/sequence/vYfm5TA_F-
_BtIGjfzjGOj8b6IK5hCTx/metadata

VR
[GET] /vrAl-
lele?hgvs={hgvs}

hgvs => HGVS expres-
sion

VRS v1.0 /vrAllele?hgvs=NC_000007.14:g.55181320A>T
/vrAllele?hgvs=NC_000007.14:g.55181220del

Support for GA4GH refget and VRS specs provided in ClinGen Allele Registry is independent from VR-Python.
Support for this community standards is implemented in ClinGen Allele Registry through extension of code written in
C++.

BRCA Exchange

The goal of BRCA Exchange (https://brcaexchange.org/) is to expand approaches to integrate and disseminate infor-
mation on BRCA variants in Hereditary Breast and Ovarian Cancer (HBOC), as an exemplar for additional genes and
additional heritable disorders2. The BRCA Exchange web portal provides information on the annotation and clini-
cal interpretation of 40,000 variants to date. As a GA4GH Driver Project, BRCA Exchange is contributing to and
adopting the Variant Annotation (VA), Pedigree (Ped) and Variant Representation (VRS) standards. BRCA Exchange
displays the VRS identifiers of all variants, and provides an API endpoint for querying variants by VRS identifier. With
this endpoint, if BRCA Exchange contains a variant that matches the VRS identifier, it returns data on that variant.
Otherwise, it returns a Server 500 error.

Example query:

• https://brcaexchange.org/backend/data/vrid?vr_id=ga4gh:VA.jgT2lU4y55WshIgcW__MVzHBnnga_iZL

VICC Meta-knowledgebase

The Variant Interpretation for Cancer Consortium (VICC; https://cancervariants.org) has a collection of ~20K clinical
interpretations associated with ~3,500 somatic variations and variation classes in a harmonized meta-knowledgebase3

(see documentation at http://docs.cancervariants.org). Each interpretation is be linked to one or more variations or a
variation class.

As a Driver Project for GA4GH, VICC is contributing to and/or adopting several GA4GH standards, including VRS,
Variant Annotation (VA), and service_info. VICC supports queries on all VRS computed identifiers at the searchAs-
sociations endpoint (vicc-docs). Features associated with each interpretation are represented as VRS objects.

Example queries:

• Allele: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VA.
mJbjSsW541oOsOtBoX36Mppr6hMjbjFr

2 Cline, M.S., et al. BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet. 2018 Dec
26;14(12):e1007752. doi:10.1371/journal.pgen.1007752

3 Wagner, A.H., et al. A harmonized meta-knowledgebase of clinical interpretations of cancer genomic variants. bioRxiv 366856 (2018).
doi:10.1101/366856

56 Chapter 6. Appendices

https://reg.clinicalgenome.org/sequence/service-info
https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul?start=2232131&end=2232145
https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul?start=2232131&end=2232145
https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul/metadata
https://reg.clinicalgenome.org/sequence/F-LrLMe1SRpfUZHkQmvkVKFEGaoDeHul/metadata
https://reg.clinicalgenome.org/vrAllele?hgvs=NC_000007.14:g.55181320A%3ET
https://reg.clinicalgenome.org/vrAllele?hgvs=NC_000007.14:g.55181220del
https://brcaexchange.org/
https://brcaexchange.org/backend/data/vrid?vr_id=ga4gh:VA.jgT2lU4y55WshIgcW__MVzHBnnga_iZL
https://cancervariants.org
http://docs.cancervariants.org
https://search.cancervariants.org/api/v1/ui/#!/Associations/searchAssociations
https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VA.mJbjSsW541oOsOtBoX36Mppr6hMjbjFr
https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VA.mJbjSsW541oOsOtBoX36Mppr6hMjbjFr
https://www.doi.org/10.1371/journal.pgen.1007752
https://doi.org/10.1101/366856

GA4GH Variation Representation Specification, Release 1.1.2

• SequenceLocation: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:
SL.gJeEs42k4qeXOKy9CJ515c0v2HTu8s4K

• Text: https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VT.
9Wer7KrxALcPRDRGVKOEzf9ZEKZpOKK0

References:

6.8 Truncated Digest Timing and Collision Analysis

The GA4GH Digest uses a truncated SHA-512 digest in order to generate a unique identifier based on data that defines
the object. This notebook discusses the choice of SHA-512 over other digest methods and the choice of truncation
length.

Note: Please see this Jupyter notebook in Python SeqRepo library for code and updates.

6.8.1 Conclusions

• The computational time for SHA-512 is similar to that of other digest methods. Given that it is believed to
distribute input bits more uniformly with no increased computational cost, it should be preferred for our use
(and likely most uses).

• 24 bytes (192 bits) of digest is ample for VRS uses. Arguably, we could choose much smaller without significant
risk of collision.

import hashlib
import math
import timeit

from IPython.display import display, Markdown

from ga4gh.vr.extras.utils import _format_time

algorithms = {'sha512', 'sha1', 'sha256', 'md5', 'sha224', 'sha384'}

6.8.2 Digest Timing

This section provides a rationale for the selection of SHA-512 as the basis for the Truncated Digest.

def blob(l):
"""return binary blob of length l (POSIX only)"""
return open("/dev/urandom", "rb").read(l)

def digest(alg, blob):
md = hashlib.new(alg)
md.update(blob)
return md.digest()

def magic_run1(alg, blob):
t = %timeit -o digest(alg, blob)
return t

(continues on next page)

6.8. Truncated Digest Timing and Collision Analysis 57

https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:SL.gJeEs42k4qeXOKy9CJ515c0v2HTu8s4K
https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:SL.gJeEs42k4qeXOKy9CJ515c0v2HTu8s4K
https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VT.9Wer7KrxALcPRDRGVKOEzf9ZEKZpOKK0
https://search.cancervariants.org/api/v1/associations?size=10&from=1&q=ga4gh:VT.9Wer7KrxALcPRDRGVKOEzf9ZEKZpOKK0
https://github.com/biocommons/biocommons.seqrepo/blob/master/docs/Truncated%20Digest%20Collision%20Analysis.ipynb
https://github.com/biocommons/biocommons.seqrepo

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

def magic_tfmt(t):
"""format TimeitResult for table"""
return "{a} ± {s} ([{b}, {w}])".format(

a = _format_time(t.average),
s = _format_time(t.stdev),
b = _format_time(t.best),
w = _format_time(t.worst),

)

blob_lengths = [100, 1000, 10000, 100000, 1000000]
blobs = [blob(l) for l in blob_lengths]

table_rows = []
table_rows += [["algorithm"] + list(map(str,blob_lengths))]
table_rows += [["-"] * len(table_rows[0])]
for alg in sorted(algorithms):

r = [alg]
for i in range(len(blobs)):

blob = blobs[i]
t = timeit.timeit(stmt='digest(alg, blob)', setup='from __main__ import alg,

→˓blob, digest', number=1000)
r += [_format_time(t)]

table_rows += [r]
table = "\n".join(["|".join(map(str,row)) for row in table_rows])
display(Markdown(table))

algorithm 100 1000 10000 100000 1000000
md5 1.02 ms 2.51 ms 23.4 ms 145 ms 1.44 s
sha1 1.02 ms 1.91 ms 11.3 ms 101 ms 1 s
sha224 1.21 ms 3.16 ms 23.1 ms 224 ms 2.2 s
sha256 1.18 ms 3.29 ms 23.3 ms 223 ms 2.2 s
sha384 1.17 ms 2.54 ms 16 ms 150 ms 1.47 s
sha512 1.2 ms 2.55 ms 16.1 ms 148 ms 1.47 s

Conclusion: SHA-512 computational time is comparable to that of other digest methods.

This is result was not expected initially. On further research, there is a clear explanation: The SHA-2 series of
digests (which includes SHA-224, SHA-256, SHA-384, and SHA-512) is defined using 64-bit operations. When an
implementation is optimized for 64-bit systems (as used for these timings), the number of cycles is essentially halved
when compared to 32-bit systems and digests that use 32-bit operations. SHA-2 digests are indeed much slower than
SHA-1 and MD5 on 32-bit systems, but such legacy platforms is not relevant to the Truncated Digest.

6.8.3 Collision Analysis

Our question: For a hash function that generates digests of length b (bits) and a corpus of m messages, what is
the probability p that there exists at least one collision? This is the so-called Birthday Problem [6].

Because analyzing digest collision probabilities typically involve choices of mathematical approximations, multiple
“answers” appear online. This section provides a quick review of prior work and extends these discussions by focusing
the choice of digest length for a desired collision probability and corpus size.

Throughout the following, we’ll use these variables:

58 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

• 𝑃 = Probability of collision

• 𝑃 ′ = Probability of no collision

• 𝑏 = digest size, in bits

• 𝑠 = digest space size, 𝑠 = 2𝑏

• 𝑚 = number of messages in corpus

The length of individual messages is irrelevant.

References

• [1] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

• [2] https://tools.ietf.org/html/rfc3548#section-4

• [3] http://stackoverflow.com/a/4014407/342839

• [4] http://stackoverflow.com/a/22029380/342839

• [5] http://preshing.com/20110504/hash-collision-probabilities/

• [6] https://en.wikipedia.org/wiki/Birthday_problem

• [7] https://en.wikipedia.org/wiki/Birthday_attack

Background: The Birthday Problem

Directly computing the probability of one or more collisions, 𝑃 , in a corpus is difficult. Instead, we first seek to solve
for 𝑃 ′, the probability that a collision does not exist (i.e., that the digests are unique). Because are only two outcomes,
𝑃 + 𝑃 ′ = 1 or, equivalently, 𝑃 = 1− 𝑃 ′.

For a corpus of size 𝑚 = 1, the probabability that the digests of all 𝑚 = 1 messages are unique is (trivially) 1:

𝑃 ′ = 𝑠/𝑠 = 1

because there are 𝑠 ways to choose the first digest from among 𝑠 possible values without a collision.

For a corpus of size 𝑚 = 2, the probabability that the digests of all 𝑚 = 2 messages are unique is:

𝑃 ′ = 1× (
𝑠− 1

𝑠
)

because there are 𝑠− 1 ways to choose the second digest from among 𝑠 possible values without a collision.

Continuing this logic, we have:

𝑃 ′ =
∏︁𝑚−1

𝑖=0

(𝑠− 𝑖)

𝑠

or, equivalently,

𝑃 ′ =
𝑠!

𝑠𝑚 · (𝑠−𝑚)!

When the size of the corpus becomes greater than the size of the digest space, the probability of uniques is zero by the
pigeonhole principle. Formally, the above equation becomes:

𝑃 ′ =

⎧⎨⎩
1 if 𝑚 = 0∏︀𝑚−1

𝑖=0
(𝑠−𝑖)

𝑠 if 1 ≤ 𝑚 ≤ 𝑠
0 if 𝑚𝑠

For the remainder of this section, we’ll focus on the case where 1 ≤ 𝑚 ≪ 𝑠. In addition, notice that the brute force
computation is not feasible in practice because 𝑚 and 𝑠 will be very large (both ≫ 29).

6.8. Truncated Digest Timing and Collision Analysis 59

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc3548#section-4
http://stackoverflow.com/a/4014407/342839
http://stackoverflow.com/a/22029380/342839
http://preshing.com/20110504/hash-collision-probabilities/
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_attack

GA4GH Variation Representation Specification, Release 1.1.2

Approximation #1: Taylor approximation of terms of P’

The Taylor series expansion of the exponential function is

𝑒𝑥 = 1 + 𝑥+
𝑥2

2!
+

𝑥3

3!
+ ...

For |𝑥| ≪ 1, the expansion is dominated by the first terms and therecore 𝑒𝑥 ≈ 1 + 𝑥.

In the above expression for 𝑃 ′, note that the product term (𝑠− 𝑖)/𝑠 is equivalent to 1− 𝑖/𝑠. Combining this with the
Taylor expansion, where 𝑥 = −𝑖/𝑠 (𝑚 ≪ 𝑠):

𝑃 ′ ≈
∏︁𝑚−1

𝑖=0
𝑒−𝑖/𝑠

= 𝑒−𝑚(𝑚−1)/2𝑠

(The latter equivalence comes from converting the product of exponents to a single exponent of a summation of −𝑖/𝑠
terms, factoring out 1/𝑠, and using the series sum equivalence

∑︀𝑛
𝑗=0 𝑗 = 𝑛(𝑛+ 1)/2 for 𝑛 ≥ 0.)

Approximation #2: Taylor approximation of P’

The above result for 𝑃 ′ is also amenable to Taylor approximation. Setting 𝑥 = −𝑚(𝑚− 1)/2𝑠, we continue from the
previous derivation:

𝑃 ′ ≈ 𝑒−(𝑚(𝑚−1)/2𝑠

≈ 1 +
−𝑚(𝑚− 1)

2𝑠

Approximation #3: Square approximation

For large 𝑚, we can approximate 𝑚(𝑚− 1) as 𝑚2 to yield

𝑃 ′ ≈ 1−𝑚2/2𝑠

Summary of equations

We may now summarize equations to approximate the probability of digest collisions.

Table 1: Summary of Equations
Method Probability of uniqueness(𝑃 ′) Probability of

collision(𝑃 =
1− 𝑃 ′)

Assumptions Source/Comparison

exact
∏︀

𝑖=0𝑚−1 (𝑠−𝑖)
𝑠

1− 𝑃 ′ 1 ≤ 𝑚 ≤ 𝑠 [1]

Taylor ap-
proximation
on #1

𝑒−𝑚(𝑚−1)/2𝑠 1− 𝑃 ′ 𝑚 ≪ 𝑠 [1]

Taylor ap-
proximation
on #2

1− 𝑚(𝑚−1)
2𝑠

𝑚(𝑚−1)
2𝑠 (same) [1]

Large square
approxima-
tion

1− 𝑚2

2𝑠
𝑚2

2𝑠 (same) [2] (where
𝑠 = 2𝑛)

60 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

• [1] https://en.wikipedia.org/wiki/Birthday_problem

• [2] http://preshing.com/20110504/hash-collision-probabilities/

6.8.4 Choosing a digest size

Now, we turn the problem around:

What digest length :math:‘b‘ is required to achieve a collision probability less than :math:‘P‘ for
:math:‘m‘ messages?

From the above summary, we have 𝑃 = 𝑚2/2𝑠 for 𝑚 ≪ 𝑠. Rewriting with 𝑠 = 2𝑏, we have the probability of a
collision using 𝑏 bits with 𝑚 messages (sequences) is:

𝑃 (𝑏,𝑚) = 𝑚2/2𝑏+1

Note that the collision probability depends on the number of messages, but not their size.

Solving for the minimum number of bits 𝑏 as a function of an expected number of sequences 𝑚 and a desired tolerance
for collisions of 𝑃 :

𝑏(𝑚,𝑃) = log2

(︂
𝑚2

𝑃

)︂
− 1

This equation is derived from equations that assume that 𝑚 ≪ 𝑠, where 𝑠 = 2𝑏. When computing 𝑏(𝑚,𝑃), we’ll
require that 𝑚/𝑠 ≤ 10−3 as follows:

𝑚/𝑠 ≤ 10−3

is approximately equivalent to:

𝑚/2𝑏 ≤ 2−5

𝑚 ≤ 2𝑏−5

𝑙𝑜𝑔2𝑚 ≤ 𝑏− 5

𝑏 ≥ 5 + 𝑙𝑜𝑔2𝑚

For completeness:

Solving for the number of messages:

𝑚(𝑏, 𝑃) =
√
𝑃 * 2𝑏+1

This equation is not used further in this analysis.

def b2B3(b):
"""Convert bits b to Bytes, rounded up modulo 3

We report modulo 3 because the intent will be to use Base64 encoding, which is
most efficient when inputs have a byte length modulo 3. (Otherwise, the resulting
string is padded with characters that provide no information.)

"""
return math.ceil(b/8/3) * 3

(continues on next page)

6.8. Truncated Digest Timing and Collision Analysis 61

https://en.wikipedia.org/wiki/Birthday_problem
http://preshing.com/20110504/hash-collision-probabilities/

GA4GH Variation Representation Specification, Release 1.1.2

(continued from previous page)

def B(P, m):
"""return the number of bits needed to achieve a collision probability
P for m messages

Assumes m << 2^b.

"""
b = math.log2(m**2 / P) - 1
if b < 5 + math.log2(m):

return "-"
return b2B3(b)

m_bins = [1E6, 1E9, 1E12, 1E15, 1E18, 1E21, 1E24, 1E30]
P_bins = [1E-30, 1E-27, 1E-24, 1E-21, 1E-18, 1E-15, 1E-12, 1E-9, 1E-6, 1E-3, 0.5]

table_rows = []
table_rows += [["#m"] + ["P<={P}".format(P=P) for P in P_bins]]
table_rows += [["-"] * len(table_rows[0])]
for n_m in m_bins:

table_rows += [["{:g}".format(n_m)] + [B(P, n_m) for P in P_bins]]
table = "\n".join(["|".join(map(str,row)) for row in table_rows])
table_header = "### digest length (bytes) required for expected collision probability
→˓P over m messages \n"
display(Markdown(table_header + table))

digest length (bytes) required for expected collision probability 𝑃 over 𝑚 messages

#m P<=
1e- 30

P<=
1e- 27

P<=
1e- 24

P<=
1e- 21

P<=
1e- 18

P<=
1e- 15

P<=
1e- 12

P<=
1e- 09

P<=
1e- 06

P<=
0.0 01

P<=
0.5

1e+
06

18 18 15 15 15 12 12 9 9 9 6

1e+
09

21 21 18 18 15 15 15 12 12 9 9

1e+
12

24 24 21 21 18 18 15 15 15 12 12

1e+
15

27 24 24 24 21 21 18 18 15 15 15

1e+
18

30 27 27 24 24 24 21 21 18 18 15

1e+
21

30 30 30 27 27 24 24 24 21 21 18

1e+
24

33 33 30 30 30 27 27 24 24 24 21

1e+
30

39 39 36 36 33 33 30 30 30 27 27

62 Chapter 6. Appendices

GA4GH Variation Representation Specification, Release 1.1.2

6.9 Glossary

computed identifier An identifier that is generated from the object’s data. Multiple groups who generated computed
identifiers the same way will generate the same identifier for the same underlying data.

digest, ga4gh_digest A digest is a digital fingerprint of a block of binary data. A digest is always the same size,
regardless of the size of the input data. It is statistically extremely unlikely for two fingerprints to match when
the underlying data are distinct.

serialization The process of converting an object in memory into a stream of bytes that may be sent via the network,
saved in a database, or written to a file.

6.9. Glossary 63

GA4GH Variation Representation Specification, Release 1.1.2

64 Chapter 6. Appendices

Bibliography

[Gibson] Gibson Canonical JSON

[OLPC] OLPC Canonical JSON

[JCS] JSON Canonicalization Scheme

65

http://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON
https://tools.ietf.org/html/draft-rundgren-json-canonicalization-scheme-05

GA4GH Variation Representation Specification, Release 1.1.2

66 Bibliography

Index

C
computed identifier, 63

D
digest, ga4gh_digest, 63

S
serialization, 63

67

	Introduction
	Terminology & Information Model
	Data Model Notes and Principles
	Optional Attributes
	Primitive Concepts
	Non-variation classes
	Variation

	Schema
	Overview
	Machine Readable Specifications

	Implementation Guide
	Required External Data
	Normalization
	Computed Identifiers
	Example

	Releases
	1.1
	1.0

	Appendices
	Relationship of VRS to existing standards
	Associating Annotations with VRS Objects
	Design Decisions
	Development Process
	Future Plans
	Proposal for GA4GH-wide Computed Identifier Standard
	Implementations
	Truncated Digest Timing and Collision Analysis
	Glossary

	Bibliography
	Index

